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Overview

The isotopic composition of naturally occurring methane has

been used to constrain the troposheric budget of that radiatively

active gas. Numerous studies have shown that the isotopic

composition is not constant, even for a specific source, and may

vary temporally and spatially. This creates an uncertainty in the

isotopic budgets but provides an opportunity to study methanogenic

processes at a new mechanistic level.

The objective of this project was to develop a process-level

model that reproduced the seasonal variations in the 13C/12C

composition of methane observed at the coastal site, Cape Lookout

Bight, North Carolina. The first step was to establish the seasonal

isotopic systematics of the site. This was done by developing an

isotope mass balance for Cape Lookout sediments on the year time

scale. Details of the mass balance are provided in Part I of this

report.

Carbon dioxide is one of the major precursors to methane. It

is thus imperative that we understand the controls on the isotopic

composition of CO 2 in sediments. Experiments and models designed to

determine what factors influence the 13C/12C ratio of dissolved CO 2

(and bicarbonate, carbonate) are reported in Part II. Parts I and

II are from the recently completed Ph.D. dissertation of Susan

Boehme.

Acetate is the other important precursor to methane. Until

recently, virtually nothing was known about the isotopic

composition of that molecule in the natural environment. A

systematic study of the isotopic composition of acetate from Cape



Lookout was undertaken and the results are reported in an article

published in Geochimica Cosmochimica Acta in 1992. A reprint of

that article is enclosed.

All of the factors thus described have been combined in a

model that faithfully reproduces the seasonal 13C/12C variations

observed at Cape Lookout. The model is described in Part III and

has been published in the book Biogeochemistry of Global Change:

Radiative Trace Gases (R.S. Oremland, ed.). Additional studies

based on the model have been published in Global Biogeochemical

Cycles. A reprint of that work is enclosed.

The factors that have been identified as most critical in

controlling the 13C/12C ratio of methane in the marine environment

are:

i. The isotopic compositions of acetate and CO 2,

2. The relative rates of CO2-reduction and acetate

dissimilation,

3. The fractionation factors of the methane-producing

processes,

4. The oxidation state of the fermentable organic carbon,

and

5. The relative fluxes of fermentable carbon and oxidants

(e.g. 02 and S04=).

Preliminary studies indicate that these same factors are important

in freshwater environments. This level of mechanistic understanding

is necessary for current efforts to predict the responses of

methanogenic ecosystems to climatic changes.
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A Carbon Isotope Mass Balance for an Anoxic Marine Sediment:

of Diagenesis

Isotopic Signatures

ABSrRACT

A carbon isotope mass balance was determined for the sediments of Cape

Lookout Bight, NC to constrain the carbon budgets published previously (Martens and

Klump, 1984; Martens et al., 1993). The diffusive, ebullitive and burial fluxes of

ECO 2 and CH 4, as well as the carbon isotope signatures of these fluxes, were

measured. The flux-weighted isotopic signature of the remineralized carbon (-18.9 +

2.7 per mil) agreed with the isotopic composition of the remineralized organic carbon

determined from the paniculate organic carbon (POC) 613C profiles (-19.2 5: 0.2),

verifying the flux and isotopic signature estimates.

The measured 513C values of the IICO 2 and CH 4 diffusive fluxes were

significantly different from those calculated from porewater gradients. The differences

appear to be influenced by methane oxidation at the sediment-water interface, although

other potential processes cannot be excluded.

The isotope mass balance provides important information concerning the

locations of potential diagenetic isotope effects. Specifically, the absence of downcore

change in the 5 t3C value of the POC fraction and the identical isotopic composition of

the POC and the products of remineralization indicate that no isotopic fractionation is

expressed during the initial breakdown of the POC, despite its isotopically

heterogeneous composition.



INTRODUCI_ON

Continental shelf and slope sediments axe the dominant sites of carbon cycling

in marine sediments, comprising only 10% of the seafloor but accounting for

approximately 90% of the organic carbon remineralization (Henrichs and Reeburgh,

1987). These environments are thus critical to the global carbon cycle. Carbon

remineraUzation rates in continental margin environments, however, are often difficult

to quantify due to the temporal and spatial variability in processes.

Organic carbon reaching the sediments can be remineralized via a succession of

oxidative processes requiring oxygen, nitrate, iron, manganese and sulfate as electron

acceptors (Mechalas, 1974). After these oxidants are depleted, if sufficient labile

organic carbon remains, it may be fermented to CH 4 and CO 2 (Claypool and Kaplan,

1974). A common approach to estimating the rate of organic matter decomposition is

the measurement of the sediment water fluxes of the remineralized products, r.CO 2 •

and CH 4 and/or the oxidants (Henrichs and Farrington, 1984; Berelson et al., 1987;

Mackin and Swider, 1989; McNichol et al., 1991; Reimers et al., 1992; and others).

Significant uncertainties in estimates of sediment-water carbon fluxes are

caused by temporal variability in the input of organic matter and associated

remineralization rates at individual sites (Martens and Klump, 1984; McNichol et al,

1991; Reimers et al., 1992). One approach to address these uncertainties is to

determine a carbon mass balance of the various sources and sinks at individual field

sites on time scales appropriate to the site (Martens and Klump, 1984; Berelson et al,

1987; Martens et al., 1993). In temporally variable systems, however, carbon budgets



may not be easily constrained without numerous measurements of fluxes.

An isotope mass balance, accomplished by measurement of the 613C of the

individual carbon fluxes and determining the flux-weighted averages of each of the

carbon pools, can serve to constrain further the fluxes and rates. Carbon isotope mass

balances have been attempted in lake productivity studies (Quay et al., 1986; Herczeg,

1988) and in estuarine studies to quantify seasonal organic matter fluxes to the estuary

floor (Lucotte et al, 1991). Alperin (1988) determined an isotope mass balance for the

sediments of Skan Bay, Alaska in order to identify the relative rates of degradation of

different organic sources. On a global scale, an isotope mass balance of atmospheric

methane has been used to estimate source inputs (e.g. Craig et al., 1988; Quay et al.,

1991). Most recently, Quay et al. (1992) and Tans et al. (1993) have attempted to use

IICO 2 613C measurements of surficial seawater to estimate increases in oceanic

uptake. All of these isotope studies have attempted to use a mass balance to estimate a

flux or rate that was not easily measured.

Our approach has been to use isotope measurements of all of the major carbon

reservoirs and fluxes of the sediments of Cape Lookout Bight, NC, to verify the

carbon budget proposed for this site (Martens and Klump, 1984; Martens et al.,

1993). Measurement of the isotopic composition of the individual fluxes and

reservoirs also allows us to address specific questions about processes at the sediment-

water interface such as methane oxidation and to characterize diagenetic isotope effects

caused by selective degradation. Cape Lookout was chosen because carbon mass

balances for this site have been published previously (Martens and Klump, 1984;



Martens et al., 1993) and remineralization rates vary seasonally in a predictable

fashion (Martens et al., 1986).

Remineralization processes (e.g. microbial methane production) can alter the

isotopic composition of the individual carbon fluxes, causing a measurable isotope

fractionation between the CH 4 and the CO 2. Diagenetic isotope effects associated with

selective remineralization of isotopicaUy distinct organic fractions have also been

hypothesized to alter the isotopic signature of the fluxes of the remineralized fraction,

and by mass balance, the buried carbon fraction as well (Spiker and Hatcher, 1984;

1987; Alperin, 1988; Fischer, 1989; Benner et al., 1991). In principle, the 12C and

13C mass balance of all identified carbon fluxes (CH 4, _CO 2, corrected for carbonate

dissolution and precipitation) should be the same as the isotopic composition of the

remineraiized carbon fraction determined from the particulate organic carbon isotope

profiles.

FIELD SITE

Cape Lookout Bight (CLB) is a small (1 km 2) back barrier island lagoon with a

water depth of 7 meters at the deepest location (Martens and Klump, 1980). All

samples were collected at Station A-l, where previous carbon mass balance has been

established (Martens and Klump, 1984; Martens et al., 1993). Circulation within the

Bight is controlled predominantly by tidal flow (Martens and Klump, 1980; Wells,

 988).

1981).

The water column above station A-1 remains oxygenated all year (Bartlett,

Cape Lookout Bight acts as a trap for fine-grained sediments and organic

4



debristransportedseasonallyfrom the Atlantic shelfduring storms (Canuel et al.,

1990) and from the shallow back barrier lagoons of coastal North Carolina by ebb

tidal flows (Martens and Klump, 1980; Chanton et al., 1983). Sediment in Station

A-1 accumulates at a rate of 8.4 to 11.8 cm/yr averaged over the upper meter of

sediment (Chanton et al., 1983; Canuel et al., 1990). Organic carbon content in the

upper meter ranges from approximately 3 to 4 wt. % (Martens and Klump, 1984;

Haddad and Martens, 1987; this study) and appears to be derived primarily from

phytoplankton and seagrass debris (Haddad and Martens, 1987). Bioirrigation and

sediment mixing by animals are not important processes for most of the year at Station

A-1 (Bartlett, 1982).

Sulfate reduction is the dominant remineralization process within the upper 10 to

15 cm of the sediment (Martens and Klump, 1984; Crill and Martens, 1987).

Methane production occurs below this zone. During summer months (May through

October) methane ebullition occurs during low tide conditions when hydrostatic

pressure is decreased (Martens and Klump, 1980). Sediment temperatures can vary by

more than 20"C through the year and are the driving force behind seasonal changes in

rates of microbial processes such as sulfate reduction and methanogenesis (Martens

and Klump, 1984).

Based on grain size distributions and annually reproducible pore water nutrient

profiles (Klump and Martens, 1981), Martens and Klump, (1984) suggested that

"quasi steady state" conditions have existed at Station A-1 at least since the early

1970's. Haddad and Martens (1987) used lignin oxidation product analysis and



isotopic measurements of sediment organic matter as weU as degradation rates of

metabolizable materials to document yearly steady state input of organic matter on an

annual time scale at Station A-1. The agreement in the sedimentation ram determined

using 21°pb and 7Be radiotracers in studies conducted almost 10 years apart (Chanton

et al., 1983; Canuel et a1., 1990) is further evidence of annual steady state sediment

accumulation at Cape Lookout Bight. Laminations seen in sediment cores in the upper

5 em of winter sediment cores and 7Be profiles (Canuel et al., 1990) indicate,

however, that sedimentation is not uniform on time scales of less than one year. Pore

water depth-concentration profiles, fluxes across the sediment-water interface and

isotope profiles change rapidly in response to increasing temperature, suggesting that

steady state conditions may not be attained on time scales of weeks. Nevertheless,

pore water depth integrated and measured rates suggests that the system is near steady

state on time scales less than a year.

M_THODS

Cores were collected by divers from Station A-1 at 4-8 week intervals from

February 1986 through February 1987. Samples also were obtained with a Soutar box

core in March, 1986 and 1988. Porewater samples were isolated with a sediment

membrane filtration squeezer (Reeburgh, 1967).

ZCO 2 analyses were performed by injecting one to two ml of porewater into

120 ml evacuated serum bottles capped with crimped, tightly greased rubber stoppers

(AUtech #6633). Duplicate or triplicate cores were analyzed. In May, 1986,

d..?ticate samples from the same core as well as samples from a second core were



analyzed. Pore water samples were frozen immediately after collection and

maintained frozen until analysis (-18 to -56°C). One ml of 1M phosphoric acid

saturated with copper sulfate was added to each porewater sample immediately before

analysis. The copper sulfate was added to the sample to precipitate sulfides in order

to avoid interference from H2S. The CO 2 was removed from the bottle by vacuum

distillation, purified, and collected cryogenically for isotopic analysis. Sample size

was determined manometrically. Bicarbonate and tank CO 2 standards were processed

to verify that the procedure was not causing isotopic fractionation and to insure

complete gas collection. The precision and accuracy of concentration measurements

were 0.4raM and 0.1raM, respectively, based on bicarbonate standards.

Reproducibility of the triplicate samples from May, 1986 was 0.SmM.

After purification the CO 2 was collected and sealed in borosilicate tubing and

its carbon isotopic composition was measured in one of three laboratories: the Stable

Isotope Laboratory, North Carolina State University; NASA-Ames, California; and the

Center for Applied Isotope Studies, Athens, Georgia. Interlab comparison among

these three labs gave comparable results (+0.2 per rail, Blair and Carter, 1992). The

accuracy and precision of the Y_CO2 measurements were 0.4 and 0.2 per rail,

respectively. Reproducibility from triplicate standard analyses was 0.95 per rail.

Porewater samples were collected on four field dates for analysis of calcium.

Following acidification and filtration (0.45 I.tm), samples for calcium were diluted to

1:20. Samples were analyzed on a Perkin-Elmer 560 Atomic Absorption spectrometer

(NCSU - Forestry Department Analytical Laboratory) using a 0.5 % Lanthanum



solution. Duplicate analyses had a precision of 0.2mM. A comparison of samples

analyzed for Ca + + at SUNY-Stony Brook (P. Rude, Marine Sciences) and NCSU

agreed to within 0.2raM.

Sediment cores were collected for CH 4 isotopic analysis. Cores were

sectioned in 2-3 cm depth intervals and placed in Mason jars containing 10 to 20 ml of

1-3M NaOH. H_dspacc gas was removed from the Mason jars by syringe through a

rubber stopper (Bellco Biotechnology) that had been fitted into the lid. After

removing water and CO 2 cryogenically, the methane was converted to CO 2 by passing

it through an 790°C furnace packed with CuO using helium as a carrier gas

(Matthews and Hayes, 1978). The resultant CO 2 was purified and coUected

cryogenically. The precision and accuracy of the analyses, based on a methane

standard (Scott Specialty Gas), were both 0.3 per rail. Duplicate core samples

expressed a maximum difference of 1.6 per rail.

Bubble samples were collected as described in Martens et al. (1986). One ml

samples of the bubble gas were removed via syringe from a serum bottle and

processed in the same way as the sedimentary methane samples. Tank CH 4 standazds,

duplicate samples from individual bottles and duplicate and triplicate bottles were

analyzed. Precision and accuracy of this procedure are the same as the values given

for the sedimentary methane procedure. Reproducibility of samples taken from the

same bottle were 0.02 per rail and reproducibility of analyses from individual bottles

collected on the same date were 0.2 per rail.

Concentration and isotopic composition measurements of the particulate organic
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carbon (POC) were made downcore on sediments collected in August, 1986. Bomb

combustion techniques are described in Blair et al. (1987). Precision and accuracy of

this procedure, based on NBS-20 standards, are 0.3 and 0.5 per rail, respectively.

Particulate inorganic carbon (PIC) was analyzed on a sediment core collected in

May, 1987. The sediment was rinsed with deionized water three times and freeze

dried. Ten to 60 mg of sediment was placed in a 120ml serum bottle and sealed with

a rubber stopper. The bottle was evacuated and one ml of 0.5M phosphoric acid was

injected and aUowed to react overnight.

same as for ECO 2 porewater samples.

Vacuum line collection procedures were the

Duplicate analyses of the 0-1 cm depth intexval

gave PIC concentrations within 0.1% and 613C values within 0.01 per mil.

An _ flux experiment was undertaken in April, 1986. Lucite chambers

were placed on the sediment surface and then pushed downward a few cm into the

sediment. A battery operated stirring system was used to keep chamber waters mixed.

Overlying water samples within the chamber were collected for IICO 2 concentration

and isotope analyses shortly after emplacement and again at the end of the experiment

prior to the next low tide ebullitive event. Cores were taken adjacent to the chambers

and analyzed for E CO 2 concentration and isotope profiles.

Flux experiments were performed in the laboratory in February 1987 and

March 1988. Lucite box core chambers were used to collect an undisturbed section of

sediment and overlying water. The chambers were sealed from below and transported

in seawater back to the laboratory and placed in a seawater circulation tank to

maintain near ambient temperatures. Overlying water samples were taken immediately

9



after the chambers were stabilized and sampled again twice during the following day.

Chambers were circulated at a rate of approximately 15 ml/minute by circulating the

overlying water with a peristaltic pump. At the end of the experiment the chambers

were subcored and the porewater was extracted for IICO z concentration and isotopic

analyses. During the March, 1988 experiment, overlying water and sediment samples

were also collected for CH 4 concentrations and isotopic analyses.

RESULTS

Particulate Organic Carbon

POC content decreases exponentially with values ranging from 4 % at the

surface to less than 3 % at depth (Fig. 2. la). The 613C values of the POC from this

study as well as profiles from Blair et al. (19873 and Blair and Carter (1992) (Fig

2. lb) behave conservatively as a function of depth, indicating that the fraction

remineralized must have a 6t3c value similar to the site average of -19.08 + 0.26

(Blair and Carter, 1992). More formally, a mass balance calculation can be used to

estimate the 613C signal of the remineralized organic carbon:

8G o- ((%Gremin) (SGrem/.) + (lO0-%G,a._ .) (SGburied))
I00

(2)

where %Gremi a is the percent of the POC remineralized. Martens and Klump (1984)

determined the percent of organic matter remineralized to be 28 4- 7%, based on five

POC profiles. The isotopic composition of the POC at the surface (tG o) is

-19.1 4- 0.2 and at depth (tGburiod) is -19.2 4- 0.1 (Fig 2.1b). Solving Eqn. (2) for

6Gremi a gives an isotopic signature of the remineralized fraction of the organic matter

10



of-19.2 4. 0.2 per mil.

IICO 2 Diffusive Flux

The results of the IICO 2 flux chamber experiments (Table 2.1) were integrated

with previous flux measurements (Martens and Klump, 1984) to yield an estimated

annual flux of 30.3 4- 4.8 moles-m2-yr 1. The error estimate of 4- 16% is based on

the interannual variability of March flux measurements in 1977, 1978 (Martens and

Klump, 1984), and 1988 (this study). The _CO 2 diffusive flux across the sediment-

water interface represents 80% of the remineralized organic carbon that is recycled to

the overlying water. This value is consistent with the 84 ± 18% measured by

Martens and Klump (1984). The isotopic signal of the annual diffusive _CO 2 flux is

estimated to be -15.5 4- 1.2 per rail based on the results of directly measured fluxes

(Table 2.1).

Fluxes and isotopic signatures were calculated from pore water gradients for

the three flux experiments to compare to the measured flux values (Table 2.1).

Calculated fluxes were determined using Fick's 1st Law of diffusion modified for

chemical transport in sediments,

a__c)oD" (3)

where:

¢o

D S

(oX_/OZ)o =

= sediment porosity at sediment surface (0.926 Cm3pw/Cm3wet _1.)

Martens and Klump, 1980)
sediment diffusion coefficient (cm2/sec) (Do taken from Li and Gregory

(1974) and corrected for sediment tortuosity (Bemer 1980))

linear gradient of IICO 2, _12CO2 or _13CO2 profiles at the sediment

water interface (raM/era)

ll



Calculated and measured fluxes and their isotopic signatures are compared in Table

2.1. The calculated isotopic signal of the March IICO 2 flux was also determined by

solving for the individual _112CO2 and _ 13CO 2 concentrations and then calculating the

distribution and isotopic signature of each of the following species based on sediment

temperature, salinity, pressure and pH: 12CO2, 13(202, H12CO3 ", H13CO3 ", 12CO3 ",

13CO3 = ; Deines et al., 1974; Stumm and Morgan, 1981) (Table 2.2; See appendix

for description), pH data were taken from Chanton (1985). Individual gradients for

each of these species were calculated and the corresponding diffusion coefficients were

used in Eqn. 3 CUnver and Himmelblau, 1964; Li and Gregory, 1974; Friedman and

O'Neil, 1977; O'Leary, 198,#). The resulting isotopic signal of _ICO 2 flux was

compared to a flux based only on the gradients of _g 12CO2 and _ 13CO2 (Table 2.2).

The individual species were calculated because previous studies had found significant

diffusion of CO 3= into the sediment despite the net flux of _ICO 2 out of the sediment

(Sayles and Curry, 1988; McNichol et al., 1991). There was no difference in the

calculated isotope signal of the Y.CO 2 flux using either approach and so individual

species gradient calculations were not applied to the February and April fluxes.

Application of a range of pH values (6-8) for the 0-1 cm interval shifted the resulting

isotopic signal by less than 1 per mil.

The isotope signature of the calculated _CO 2 flux was consistently 6 to 7 per

mil enriched in 13C compared to the measured values (Table 2.1). The measured

fluxes were slightly larger than the calculated fluxes except in the April in situ

experiment in which the flux was calculated using porewater gradients from a core

12



near the chamber.

Burial of IICO 2

Burial of _CO 2 accounts for a flux of 6.6 5:0.5 moles-m'2-yr -1 with an

isotopic signature of +8.3 + 1.5 per rail. The burial flux was determined using an

average of IICO 2 concentrations measured at depths between 35 and 40 cm depth (Fig.

2.2) and applying the following equation:

Jburial = C.O)_. ( 4 )

where

¢., = sediment porosity at depth (0.85 cm 3 -w/Cm 3 wet seal.; Chanton, 1985)

_** = sediment accumulation rate at depth (_0 cmlyr: Chanton et al., 1983),

C** = average concentration of IICO 2 at 35 to 40cm (mM/cm).

The burial depth of 40 cm was chosen because the _ CO 2 concentration profiles are

nearly asymptotic and greater than 95 % of the remineralization occurs above this

horizon (Martens and Klump, 1984). The isotopic signal of the buried IICO 2 of +8.3

5:1.5 per mil was determined by averaging the isotopic values measured at depths of

35 to 40 cm.

CH 4 Bubble Flux

Methane ebullitive fluxes were measured previously (Martens and Chanton,

1989; Martens et al., 1986). The annual ebullitive flux is calculated to be 6.4 5:0.8

moles-m-2-yr -1 based on fluxes measured from 1976 to 1986 (Table 2.3). The

isotopic signature of the ebullitive flux of -60.0 + 1.2 is based on flux-weighted

average monthly methane measurements (Martens et al., 1986; Fig. 2.3). The isotope

13



measurements(Fig. 2.3) showstrongseasonality,with relatively 13C-enriched

methaneconsistentlyreleasedduring the periodof peakproduction(July-August).

CO2 Bubble Flux

Ebullition stripsa portion of the dissolvedCO2 from the porewater. The CO2

ebullitive flux, 0.13 + 0.05 moles-m'2-yr"1hasan annual613Cvalueof -8.5 + 1.4

per mil (Martenset al., 1986). The morenegativeCO2 613Cvalueswere measured

in the summermonthscorrespondingto the periodof highestremineralizationrates

and the most depleted_ICO2 valuesmeasuredin the sediment(Fig. 2.2; Martenset

al., 1986).

CH4 Diffusive Flux

The annual methane diffusive flux of 0.85 :t: 0.8 moles-m'2-yr 1 was taken

from Martens and Klump (1980) and is based on pore water methane profiles and

saturation calculations. The measured isotope signature of the methane flux is

estimated to be -50.5 + 0.3 per mil, based on the two flux chamber measurements

from this study. The diffusive signal is 9.5 per rail enriched in 13C relative to the

annual methane ebullient isotope signal (Martens et al., 1986; this study) and is 4 per

rail enriched compared to the diffusive flux calculated from pore water gradients of

methane for March (-54.0 +_ 0.3 per mil; Table 2.1).

No attempt to determine the seasonality of this signature was made, however, a

sensitivity of this flux to the overall isotopic signature of the remineralized fraction

was performed. Assuming that either all or none of the diffusive flux was oxidized

(the probable cause for the isotopic signature that is different from the methane

14



produced in the sediment) resulted in less than a 0.5 per mil shift in the isotopic

signature of the rernineralized carbon.

CH 4 Burial Flux

The burial rate of methane has been calculated to be 0.14 + 0.02 moles-m 2-

yr 1 (Martens et al., 1993). The 613C value of the buried CH 4 (-59.9 +_ 1.9) was

determined by averaging the isotopic signal of the sedimentary methane at 40 cm (Fig.

2.4). This signal is not significantly different than the methane bubble flux value of

-60.0 +_. 1.2 per mil, indicating that the ebullitive and burial processes are not

influenced by oxidation or transport isotope effects (Martens et al., 1986; Chanton and

Dacey, 1991).

Solid Ph_c Inorg,_ic Carbon

Ca + + concentration profiles increase from overlying water values in the upper

few centimeters and then decrease with depth (Fig. 2.5a). The rates of dissolution and

precipitation of particulate inorganic carbon (PIC) were estimated from these

porewater Ca + + profiles by assuming that an increase in the Ca + + concentration

profile was caused by dissolution and a decrease in concentration was caused by

precipitation of PIC. The Ca + + porewater linear concentration gradients were used

in the 0-5 and 5-25 cm intervals to estimate the dissolution and precipitation rate of

CaCO 3 respectively. The bulk sediment diffusivity for Ca + + (D s) was determined

by correcting the diffusion coefficients for Ca + + measured in seawater (Li and

Gregory; 1974) for the given temperature and sediment tortuosity (Berner, 1980).

The isotopic composition of the PIC that was assumed to have dissolved in the

15



0-5cm depth intervalwas determined by averaging the measured isotopiccomposition

of the PIC within the dissolutionzone (Fig. 2.5b). The isotopiccomposition of the

assumed precipitatedcarbonate of -3.8 ± 3.8 per railisbased on the average isotopic

value of the DIC pool in the 5-25 cm depth intervalfrom the same months as the

measured Ca + + profiles(sccFig. 2.2). The use of the Ca + + profilesto determine

the PIC flux implies thatCaCO 3 isthe dominant speciesinvolved in the dissolution

and precipitationprocesses. To a firstapproximation, thisappears to be truesince

Mg ++ concentrationprofilesshowed no significanttrendsand Sr + + concentrations,

which mimicked the Ca + + profiles,were an order of magnitude lower in

concentrationthan the Ca + + values (seeAppendices for Mg ++ and Sr+ + results).

The decrease in Ca + + concentrationatdepth may be a resultof precipitationafter

core recovery because of the oversaturatednatureof the porewaters, thus the calculat-

ed precipitationrateshould be rcgardcd as an upper limit.

The Carbon Isotope Mass Balance

The carbon isotope mass balance determined as described above is summarized

in Table 2.4 and shown schematicallyin Fig. 2.6. The totalflux (/tom) isdefined as

the sum of the buried,bubble and diffusivefluxesof _CO 2 and CH 4. To determine

the isotopiccomposition of the portionof Jtomlthatresultsdirectlyfrom

thcrcmincralizationof the POC (Jremin),the contributionsof carbonate dissolutionand

precipitationnccd to be accounted for:

Jto=,,l =J'r e_. +Jdlu +J;:,_p (s)

16



(J_oral)(6 ro=al)= (J=emi.)(_rem/n ) + (Jdi88) (_dlss) ÷ (JPreciP) (_;reciP) (6 )

Using eqns. 5 and 6, the isotopic composition of the remineralized carbon is estimated

to be -18.9 + 2.7 per rail, which is in excel.lent agreement with the remineralized

organic matter signal determined from the POC profiles (-19.2 ± 0.2 per rail).

The error associated with the estimated signature of the remineralized carbon

pool of 2.7 per rail is primarily due to interannual variability in fluxes and the errors

associated with the isotopic composition of the diffusive IICO 2 flux. The annual IICO 2

flux makes up approximately 70% of the remineralized carbon fraction, and therefore,

the budget is very sensitive to the isotopic value assigned to this flux. The internal

consistency of the mass balance suggests that despite the small data sets used to

determine the methane and _CO 2 diffusive fluxes and the interannual variability, the

values are realistic estimates of the isotopic signature of these fluxes.

The isotopic composition of the diffusive CH 4 flux was calculated from a

single experiment conducted in March. There is undoubtedly some seasonality to this

signal that is not included in the estimate used here, but as noted, the small size of this

flux precludes it from strongly affecting the overall isotopic signature of the

remineralized carbon.

The isotopic composition of the dissolved organic carbon (DOC) flux has not

been measured and consequently is not included in this budget. The diffusive and

burial DOC fluxes should not significantly influence the overall isotope mass balance

17



because they represent only 5 % of the remineralized carbon flux (Martens et at.,

1993), and the isotopic composition of DOC fractions in similar environments are

typically within 2-3 per rail of the particulate organic carbon pool (Williams and

Gordon, 1970; Nissenbaum et al., 1972; Brown et al., 1972; Orem et al., 1986;

Alperin, 1988).

DISCUSSION

The successful isotopic mass balance of the isotopic signature of the sources

and sinks of carbon verifies the carbon budget determined for Cape Lookout as well as

the isotopic signatures of the different carbon fluxes at a site that experiences

significant seasonal variations. More importantly, the isotope mass balance allows us

to constrain further our interpretations of certain processes occurring in this system to

a degree previously not possible. These processes are discussed below in the context

of the balanced carbon isotope budget.

Surficial processes influencing IICO 2 and CH 4 fluxes

The diffusive fluxes of both _CO 2 and CH 4 and their associated isotopic

signatures were directly measured in chamber experiments. Pore water analyses of the

flux chamber sediments were made so that the fluxes and their isotopic signature could

be estimated from the concentration gradients at the sediment-water interface using

Fick's I st Law (Eqn. 3). Our original intent was to use the monthly _ CO 2 profiles

(Fig. 2.2) to determine the annual 8 I3C value of the diffusive flux. The comparison

of measured and calculated _.CO 2 fluxes and their associated isotopic signatures

revealed that the calculated isotopic compositions of the fluxes were consistently 6-7

18



per mil enriched in 13C relative to the measured values (Table 2.1). The calculated

diffusive flux of CH 4 was greater and depleted in 13C relative to the measured CH 4

flux (Table 2.1). Several possible mechanisms that could account for the

discrepancies between the calculated and measured isotopic signatures of these fluxes

are discussed below.

In theory, differential diffusion of the inorganic carbon species, CO 2, HCO3",

and CO 3--, because of pH gradients across the sediment-water interface, could

influence the isotopic composition of the flux of _CO 2 and the sedimentary _CO 2

pool. The apparent production of _CO 2 that is significantly enriched in 13C relative

to the organic carbon has been noted in coastal and deep-sea sediments and has been

interpreted to result from the diffusion of t3C-depleted CO2 out of and relatively 13C-

enriched CO3 = into the sediment (McNichol, 1986; Sayles and Curry, 1988;

McNichol et al., 1991). Calculations of the individual fluxes and isotopic signals of

CO2, HCO 3" and CO3 = from the March flux experiment demonstrate that the

magnitude of the CO3 = flux is insufficient to alter significantly the overaU isotopic

IICO 2 signal and thus this mechanism can be ruled out for Cape Lookout sediments

(Table 2.2).

Differences in the diffusion coefficient of isotopicaUy substituted species

would, if they exist, contribute to apparent diffusion isotope effects. For example, the

ratio of the diffusion coefficient for 12CO2 and 13CO2 in water (12D/t3D) is 1.0007 4-

0.0002 at 25"C (O'Leary, 1984). This fractionation has been included in the

calculations of the IICO 2 isotopic signal (Table 2.1). To our knowledge, the potential
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isotopeeffectsassociatedwith the diffusion of HCO3", CO3 = or CH 4 have not been

measured.

We consider methane oxidation in surfieial sediments to be a source of 13C-

depleted material to the diffusive IICO 2 flux. Methane oxidation could also explain

the discrepancies in the measured and calculated CH 4 fluxes. Evidence for CH 4

oxidation includes 14CH4-tracer studies (M. Alperin, pets. comm.), and the 12C-

depleted CH 4 in the winter surface sediments at Station A-1 (Fig. 2.4). Methane

oxidizing bacteria preferentially utilize 12CH4 (Silverman and Oyama, 1968; Barker

and Fritz, 1981; Coleman et al., 1981; Whiticar and Faber, 1986; King et al., 1989).

The fractionation factor (12k/13k) for aerobic oxidation of CH 4 ranges from 1.005 to

1.031 in culture (See Table 1 in Whiticar and Faber, 1986). An estimate of the

fraetionation factor for methane oxidation in the surficial sediments of CLB can be

determined if it is assumed that the difference between the measured and calculated

methane isotope signal of the March flux experiment is entirely the result of methane

oxidation:

b_,_o= (8_o,.,.(:-F_)) + (8 o.,_) ('7)

where Fox is the fraction of the potential diffusive flux of methane that has been

oxidized, and Scale and 8me _ are the isotopic compositions of the calculated and

measured fluxes (-54.0 5:0.3 and -50.5 5: 0.3, respectively) (Table 2.1). Fox was

estimated to be 0.32 using the equation:

Accordingly, 8ox is -61.5 per rail and the fractionation factor (cx) can be estimated

using the following relationship:
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(8)

__ (5_,.,÷z°3) (9)

The calculated 0_ is 1.012 -t- 0.005, which falls within the range of both the culture

studies mentioned above, and the range determined by Whiticar and Faber (1986) for

methane oxidation in natural systems (¢x = 1.002 to 1.014).

If it is assumed that the difference between measured and calculated CH 4 fluxes

is due to CH 4 oxidation alone, then only 14 _tmoles-m'2-yr "1 of CO 2 are added to the

21CO 2 flux with an isotopic signal of-61.5 per rail (Table 2.1). This small addition of

13C-depleted CO 2 shifts the calculated _CO 2 flux by less than one per rail, and thus

does not fuUy explain the discrepancy between the measured and calculated isotopic

values of the IICO 2 flux.

Diagenetic Isotope Effects

The carbon isotope mass balance allows us to address the effects of early

diagenesis on the isotopic composition of the organic matter that is deposited at Cape

Lookout Bight. For the purposes of this discussion, a diagenetic isotope effect is

defined as any process that alters the isotopic composition of the organic carbon or

creates isotopieally distinct pools of carbon after the original organic matter is

deposited in a sediment. Selective degradation of isotopically heterogeneous fractions,

or kinetic isotope effects associated with various diagenetic processes could result in a
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diagenetic isotope effect. The well known isotopic discrimination associated with

biogenic methane formation is included in this definition.

In principle, Cape Lookout Bight is an ideal location to investigate potential

isotopic effects because of its nearly steady state annual input of organic matter. In

addition, Cape Lookout Bight receives organic matter from a variety of isotopically

distinct sources such as phytoplankton and seagrasses, as indicated by isotopic

measurements, lignin and lipid analyses (Haddad, 1989; Blair and Carter, 1992).

Isotopic differences apparently exist between compound classes at this site as well, as

indicated by the average 813C values of fatty acids (-22.1 -I- 0.5), neutral lipids (-22.9

-I- 0.3) and POC (-19.08 + 0.26) fractions (Blair and Carter, 1992). Thus, given that

nearly 30% of the organic matter delivered to site A-1 is remineralized, a diagenetic

isotope effect might be expected, if any of these organic fractions were selectively

degraded. Surprisingly, the downcore proftles of the POC 813C values and the

isotope mass balance of the _CO 2 and CH 4 fluxes provide no evidence for selective

degradation or preservation of isotopically distinct organic pools. McArthur (1989),

Cronin and Morris (1982), Reimers and Suess (1983) and others, also found no

indication of an isotopic diagenetic effect in the organic carbon record from a variety

of sediment types and ages. This is in contrast to observations made in marine

sediments of Skan Bay (Alperin, 1988) where changes in the isotopic composition of

the organic matter downcore could be attributed to different rates of remineralization

of the dominant organic matter sources, and Mangrove Lake, Bermuda where a 12C

enrichment downcore in the sediments was attributed to selective preservation (Spiker

22



andHatcher, 1984).

The absenceof any expressed isotope effect associated with the input and early

diagenesis of organic matter at CLB is surprising since the inputs are isotopically

distinct. The analyses of both the deposited and buried fractions of the organic matter

of Haddad (1989) and Martens et al. (1993) indicated that the organic matter that was

remineralized was most similar to an algal/bacterial source based on the CIN ratios

and the loss of biochemical components downcore. The carbon isotope mass balance

can be explained most simply by a remineralized fraction that is a mixture of two

sources, predominantly algal/bacterial and a vascular plant component.

The large isotopic difference observed between the POC and CH 4 indicates that

isotope fractionation occurs during some step or steps in the production of methane

from the breakdown of organic matter. Large isotope effects are associated with the

reduction of CO 2 and the dissimilation of acetate to form CH 4 at this site (Blair and

Carter, 1992; Blair et al., 1993). The carbon isotope budget should allow us to

determine if CO 2 reduction and acetate dissimilation are masking other diagenetie

isotope effects occurring during the initial breakdown of organic matter at Cape

lookout.

The carbon isotope mass balance, when considered in light of the downcore

813C acetate measurements of Blair and Carter (1992) indicate that there is little or no

fractionation in the breakdown of high molecular weight compounds (biopolymers) to

form the low molecular weight biomonomers. If there was isotopic fractionation in

the initial breakdown of the organic matter, one would expect to see 613C acetate
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measurements in the sulfate zone that were very different from the 613C POC

measurements downcore, and the isotopic composition of the flux weighted sum of

organic carbon remineralization (6tota 1) would be isotopically different than the organic

matter. Isotope discrimination might occur during the fermentation of lower weight

organic matter to form acetate and other intermediates, however its signal may not be

expressed if most of the organic matter flows through the acetate pathway (Blair and

Carter, 1992). An acetate 613C measurement from the sulfate reduction zone of Cape

Lookout Bight sediments of -17.6 per mil indicates that the expressed isotope effect is

probably less than 2 per mil during the oxidation of acetate (Blair and Carter, 1992).

These observations suggest that the isotopic fractionation of the carbon during the

formation of methane via CO 2 reduction and acetate dissimilation occurs in the final

steps of CH 4 production and little or no fractionation is expressed in the breakdown of

higher molecular weight compounds to form low molecular weight compounds such as

acetate. This conclusion is in contrast to the less well-constrained speculations about

sedimentary processes that would cause intramolecular isotope effects such as bond

rupture (Macko, 1992), polymerization, and decarboxylation (Galimov, 1980) and thus

alter the isotopic composition of the residual organic matter.
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SUMMARY AND CONCLUSIONS

The carbonisotopicsignalof the remineralizedorganicmatterin CapeLookout

Bight sedimentsis -18.9 +_2.7 per rail basedon a massbalanceof the remineralized

carbonfractions. This estimateis indistinguishablefrom the calculated613Csignalof

theremineralizedorganicmatterdeterminedfrom vertically uniform POCprofdesof

-19.2 °r 0.2 per rail. The agreement confirms that the major sources and sinks of

carbon and their isotopic signals have been quantified. The comparison of directly

measured and calculated CH 4 and _ CO 2 isotope fluxes suggest that a surficial process

is altering the isotopic composition of these species diffusing out of the sediment.

Methane oxidation has altered the isotopic compositions of both the _CO 2 and CH 4

leaving the sediment, but can account for little of the discrepancy in calculated versus

measured 613C values of the Y.CO 2 fluxes.

The isotope mass balance revealed little variation in the isotopic composition of

the organic matter being deposited, remineralized, or buried. This is in contrast to

numerous recent studies that have focused on organic matter source variations,

individual biochemical components and their selective loss or preservation, and also

intramolecular isotope effects to explain downcore changes in 613C values of POC

(Galimov, 1980; Spiker and Hatcher, 1984; 1987; Benner et al., 1987; Alberta et al.,

1988; Hayes et a1.,1990; McArthur et al., 1992). The absence of an expressed

diagenetic isotope effect in a system with a mixture of organic matter sources suggests

that the processes that have been speculated to cause the isotopic variations in

sedimentary organic matter profiles may not typically be expressed in the sedimentary
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record, and the variations seen may more often be source related (Dean et al., 1986).

A cm'bon isotope mass balance was achieved by seasonal measurements of the

dominant components of the carbon cycle in this system, highlighting the importance

of considering seasonality when determining an isotopic signal for a specific

environment. This is particularly important in coastal systems where the rates of

remineralization processes and the isotopic signals of the various fluxes should vary

seasonally.
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Fig. 2.1 CzpeLookout Bight paniculateorganiccarbon concentration (A) and

6 3Cl values as a function of depth in the seabed. (B) POC profiles are

from Chanton et al. (1983); Blair et al. (1987), Blair and Carter (1992)

and this study.
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Fig. 2.2 IICO 2 concentration and 813C profiles from Cape Lookout Bight.

Samples were collected in 1986 except where noted. Individual

symbols represent separate cores collected on the same sampling date.

The open and filled circles for the May 1986 profiles represent

duplicate samples from the same core. Note differences in

concentration, depth, and 813C scales for March profiles.
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Fig. 2.3 Methane flux and 813C bubblc data from Capc Lookout. The

ebuUitivc fluxes from mid October to May arc essentially zero. Flux
and 1983-1984 813C bubble data arc from Martens ctal. (1986). 813C

bubble data for 1986 arc from this study.
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Fig. 2.4 Sedimentary CH 4 613C profiles from Cape Lookout Bight.
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Fig. 2.5 Cape Lookout Bight porewatcr calcium profiles from 1990-91 (A) and

particulate inorganic carbon concentration (PIC) and 813C profiles (B).

The dotted lineat 5 cm indicatesthe maximum depth assumed for net

dissolutionand 5 to 25 cm isconsidered the zone of precipitation.
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Fig. 2.6 The carbon flow and isotopic composition of the major fluxes at CLB.

The double arrows for methane and CO 2 represent diffusion and bubble

ebullition. Carbon fluxes arc given in parentheses.
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Table 2.3 CH 4 Bubble Flux from Martens et al. (1986) and Martens and

Chanton (1989).

(moles-m2-month "1)

Month 1976 1977 1978 1985 1986 Average s.d.

May 0.08 0.54 0.31 0.32

June 0.98 1.23 1.10 0.18

July 0.31 2.21 1.26 1.35

Aug 0.70 1.71 1.57 2.94 2.02 1.79 0.81

Sept 0.46 0.86 2.75 1.36 1.22

Oct 0.71 0.16 0.89 0.59 0.38

Sum (mol-m'2-yr'l): 6.4 2.1"

*Error was determined as:

o =v'_ (s. d. )_
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Table 2.4 Carbon isotope mass balance for Cape Lookout, Station A-1.

moles-m'2-yr -I 613C

CH 4

Buried 0.14(0.02) -59.9 (1.9)

Bubble 6.4(2.1) -60.0(1.2)

Diffusive 0.85(0.8) -50.5(0.3)

IICO 2

Buried 6.5(0.5) +8.3(1.5)

Bubble 0.13(0.05) -8.5(1.4)

Diffusive 30.3(4.8) -15.5(1.2)

Jtoud 44.3(12.6) -19.2(2.7) l

PIC

Dissolved 0.27(0.4) -0.14(0.2)

Precipitated - 1.1 (0.3) -3.8(3.8)

Jmmm 2 45.13(12.6) - 18.9(2.7)

1The estimated 613C of the flux (Jtot_d) was determined using the following equation:

[ (8Ji) (0"/)]

81_C(Je°c'l) - _ (Ji)

where i = the diffusive, ebullitive and burial fluxes of CH 4 and IICO 2.

2Calculated using Eqn. 5.

_3



REFERENCES

ALBERTS J.J., FILIP Z., PRICE M.T., WILLZAMS D.J. and WILLIAMS M.C.

(1988) Elemental composition, stable carbon isotope ratios and

spectrophotometric properties of humic substances occurring in a salt marsh

estuary. Org. Geochem. 12, 455-467.

ALPERIN M.J. (1988) The carbon cycle in an anoxic marine sediment:

concentrations, rates, isotope ratios, and diagenetic models. Ph.D dissertation,

University of Alaska, Fairbanks.

BARKER J.F. and FRITZ P. (1981) Carbon isotope fractionation during microbial

methane oxidation. Appl. Environ. Microbiol. 293, 289-291.

BARTLE'Vr K.A.(1981) Macroinfauna distribution and seasonal influences on

interstitial water chemistry of Cape Lookout Bight, N.C.M.S. Thesis,

University of North Carolina at Chapel Hill.

BENNER R., FOGEL M.L., SPRAGUE E.K. and HODSON R.E. (1987) Depletion

of t3C in lignin and its implications for stable isotope studies. Nature 329,

708-710.

BENNER R., FOGEL M.L. and SPRAGUE E.K. (1991) Diagenesis of belowground

biomass of Spartina alterniflora in salt-marsh sediments. Limnol. Oceanogr.

36, 1358-1374.

B_ON W.M., HAMMOND D.E. and JOHNSON K.S. (1987) Benthic fluxes

and the cycling of biogenic silica and carbon in two southern California
borderland basins. Geochim. Cosmochim. Acta 51, 1345-1363.

BERNER R.A. (1980) Early diagenesis. Princeton University Press.

BLAIR N.E., MARTENS C.S., and DES MARAIS D.J. (1987) Natural abundances

of carbon isotopes in acetate from a coastal marine sediment. Science

236, 66-68.

BLAIR N.E. and CARTER W.D. (1992) The carbon isotopebiogcochemistry of

acetatefrom a methanogenic marine sediment. Geochim. Cosmochim. Acta.

56, 1247-1258.

BLAIR N.E., BOEHME S.E., and CARTER W.D. (1993) The carbon isotope

biogcochemistry of methane production in anoxic sediments 1. field

observations. In The Biogeochemistry of Global Change: Radiative Trace Gaaea

(ed. R.S. Oremland) Chapman and Hall.



BROWN F.S., BAEDECKER M.J., NISSENBAUM,A., and KAPLAN, I.R. (1972)

Early diagenesis in Saanich Inlet, a reducing fjord, British Columbia. Part III:

Changes in organic constituents of sediment. Geochim. Cosmochim. Acta

36, 1185-1203.

CANUEL E.A., MARTENS C.S. and BENNINGER L.K. (1990) Seasonal variations

in 7Be activity in the sediments of Cape Lookout Bight, North Carolina.

Geochim. Cosmochim. Acta 54, 237-245.

CHANTON J.P., MARTENS C.S. and GOLDHABER M.B. (1987) Biogeochemieal

cycling in an organic-rich coastal marine basin. 7. Sulfur mass balance, oxygen

uptake and sulfide retention. Geochim. Cosmochim. Acta 51, 1187-1199.

CHANTON J.P. (1985) Sulfur mass balance and isotopic fractionation in an anoxic

marine sediment. Ph.D. Dissertation, University of North Carolina, Chapel

Hill.

CHANTON J.P., MARTENS C.S., and KIPPHUT G.W. (1983) Lead-210 sediment

geochronology in an organic-rich coastal marine basin. Geochim. Cosmochim.

Acta 49, 1791-1804.

CLAYPOOL G.E. and KAPLAN I.R. (1974) The origin and distribution of methane
in marine sediments. In Natural Gases in Marine Sediments (ed. I.R. Kaplan)

pp. 99-139. Plenum Press.

COLEMAN D.D., RISA'ITI J.B. and SCHOELL M. (1981) Fractionation of carbon

and hydrogen isotopes by methane oxidizing bacteria. Geochim. Cosmochim.

Acta 45, 1033-1037.

CRAIG H., CHOU C.C., WELHAN J.A., STEVENS C.M. and ENGELKEMEIR A.

(1988) The isotopic composition of methane in polar ice cores. Science 242,

1535-1538.

CRILL P.M. and MARTENS C.S. (1987) Biogeochemical cycling in an

organic-rich coastal marine basin. 6. Temporal and spatial variations in sulfate

reduction rates. Geochim. Cosmochim. Acta 51, 1175-1186.

CRONIN J.R. and MORRIS R.J. (1982) The occurrence of high molecular weight

humic material in recent organic-rich sediment from the Namibian Shelf. Est.

Coast. Shelf Sci. 15, 17-27.

DEAN W.E., ARTHUR M.A. and CLAYPOOL G.E. (1986) Depletion of 13C

in cretaceous marine organic matter: source, diagenetic, or environmental

signal? Mar. Geol. 70, 119-157.

_5



DEINES P., LANGMUIR D., HARMON R.S. (1974) Stable carbon isotope ratios

and the existence of a gas phase in the evolution of carbonate groundwaters.

Geochim. Cosmochim. Acta 38, 1147-1164.

FISCHER G. (1989) Stabile kohlenstoff-isotope in partikul_rer organischer substanz

aus dem siidpolarmeer (Aflantischer Sektor) Ph.D. dissertation, Universi_t

Bremen.

FRIEDMAN I. and O'NEIL J.R. (1977) Compilation of stable isotope fractionation

factors of geochemical interest. U.S. Geological Survey Professional Paper

440-KK.

GALIMOV E.M., (1985) The Biological Fractionation of Isotopes. Academic Press.

261pp.

HADDAD R.I. (1989) Sources and reactivity of organic matter accumulating in a

rapidly depositing, coastal environment. Ph.D. Dissertation, University of

North Carolina, Chapel Hill.

HADDAD R.I. and MARTENS C. S. (1987) Biogeochemical cycling in an

organic-rich coastal marine basin: 9. Sources and accumulation rates of

vascular plant-derived organic material. Geochim. Cosmochim. Acta 51, 2991-

3001.

HAYES J.M., FREEMAN K.H., POPP B.N., and HOHAM C.H. (1990) Compound-

specific isotopic analyses: A novel tool for reconstruction of ancient

biogeochemieal processes. Org. Geqchem. 16, 1115-1128.

HENRICHS S.M. and REEBURGH W.S. (1987) Anaerobic mineralization of marine

sediment organic matter: Rates of anaerobic processes in the oceanic carbon

economy. Geomicrob. J. 5, 191-237.

HENRICHS S.M. and FARRINGTON J.W. (1984) Peru upwelling region sediments

near 15"S. 1.Remineralization and accumulation of organic matter. LimnoL

Oceanogr. 29, 1-19.

HERCZEG A.L. (1988) Early diagenesis of organic matter in lake sediments: A

stable carbon isotope study of pore waters. Chem. GeoL 72, 199-209.

KING S.L., QUAY P.D. and LANSDOWN J.M. (1989) The 13C/12C kinetic

isotopic effect for soil oxidation of methane at ambient atmospheric

concentrations. J. Geophys. Res. 94, 18273-18277.

46



KLUMP J.V. and MARTENS C.S. (1981) Biogeochemical cycling in an

organic-rich coastal marine basin. 2. Nutrient sediment-water exchange

processes. Geochim. Cosmochim. Acta 45, 101-121.

LI Y.H. and GREGORY S. (1974) Diffusion of ions in sea water and in deep-sea

sediments. Geochim Cosmochim. Acta, 38, 703-714.

LUCOTTE M., HILLAIRE-MARCEL C. and LOUCHOUARN P. (1991)

organic carbon budget in the St. Lawrence lower estuary from 13C

Coast. Shelf Sci. 32, 297-312.

First-order

data. Eat.

MACKIN J.E. and SWlDER K.T. (1989) Organic matter decomposition pathways and

oxygen consumption in coastal marine sediments. J. Mar. Res. 47, 681-716.

MACKO S.A. (1992) The characterization of organic matter in abyssal sediments,

pore waters and sediment traps. In Deep-Sea Food Chains and the Global

Carbon Cycle (eds. T. Rowe and V. Pariente) pp. 325-338. Kluwer Academic

Publishers.

MARTENS C.S. and KLUMP J.V. (1980) Biogeochemical cycling in an

organic-rich coastal marine basin - 1. Methane sediment-water exchange

processes. Geochim. Cosmochim. Acta 44, 471-490.

MARTENS C.S. and KLUMP J.V. (1984) Biogeochemical cycling in an organic-rich

coastal marine basin. 4. An organic carbon budget for sediments dominated

by sulfate reduction and methanogenesis. Geochim. Cosmochim. Acta

48, 1987-2004.

MARTENS C.S., BLAIR N.E., GREEN C.D.and DES MARAIS D.J. (1986)

Seasonal variations in the stable carbon isotopic signature of biogenic methane

in a coastal sediment. Science 233, 1300-1303.

MARTENS C.S. and CHANTON J.P. (1989) Radon as a tracer of biogenic

equilibration and transport from methane-saturated sediments J. Geophys. Res.

94, 3451-3459.

MARTENS C.S., HADDAD R.I., and CHANTON, J.P. (1993) Organic matter

accumulation, remineralization and burial in an anoxic coastal sediment. In:

Organic Matter: Productivity, Accumulation and Preservation in Recent and

Ancient Sediment (eds. J.K. Whelm and J.W. Farrington) Columbia

University Press, NY.

MA'VrHEWS D.E. and HAYES J.M. (1978) Isotope-ratio-monitoring gas

chromatography-mass spectrometry. Anal. Chem. 50, 1465-1473.

47



MCARTHUR J.M. (1989) Carbon isotopes in pore water, calcite, and organic carbon

from distal mrbidites of the Madeira Abyssal Plain. Geochim. Cosmochim.

Acta 53, 2997-3004.

MCARTHUR J.M., TYSON R.V., THOMSON J. and MAIq'EY D. (1992) Early

diagenesis of marine organic matter: Alteration of the carbon isotopic

composition. Mar. Geol. 105, 51-61.

MCNICHOL A.P. (1986) A study of the remineralization of organic carbon in

nearshore sediments using carbon isotopes. Ph.D. Dissertation, WHOI/MIT,

WHOI-86-27.

MCNICHOL A.P., DRUFFEL E.R.M. and LEE C. (1991) Carbon cycling in coastal

sediments: 2. An investigation of the sources of IICO 2 to pore water using

carbon isotopes. In: Organic Substances and Sediments in Water (ed. R.A.

Baker) Lewis Publishers, Chelsea, MI.

MECHALAS B.J. (1974) Pathways and environmental requirements for biogenic gas

production in the ocean. In Natural Gases in Marine Sediments (ed. I.R.

Kaplan) pp. 151-177, Plenum Press.

NISSENBAUM A., BAEDECKER M.J. and KAPLAN I.R. (1972) Studies on

dissolved organic matter from interstitial water of a reducing marine fjord.

Adv. in Org. Geochem. (ed. Braunschweig) Pergammon Press, Oxford,

427-440.

O'_Y (1984) Measurement of the isotope fractionation associated with diffusion

of carbon dioxide in aqueous solution. J. Phys. Chem. 88, 823-825.

OREM W.H., HATCHER P.G., SPIKER E., SZEVERE/qYI N.M. and MACIEL

G.E. (1986) Dissolved organic matter in anoxic pore waters from Mangrove

Lake, Bermuda Geochim. Cosmochim. Acta 50, 609-618.

QUAY P.D., EMERSON S.R., QUAY B.M. and DEVOL A.H. (1986) The carbon

cycle for Lake Washington - A stable isotope study. Linmol. Oceanogr. 31,
596-611.

QUAY P.D., TILBROOK B. and WONG C.S. (1992) Oceanic uptake of fossil fuel

CO2:Carbon-13 evidence. Science 256, 74-79.

t_8



QUAY P.D., KING S.L., STUTSMAN J., WILBUR D.O., STEELE L.P., FUNGI.,

GAMMON R.H., BROWN T.A., FARWELL G.W., GROOTES P.M. and

SCHMIDT F.H. (1991) Carbon isotopic composition of atmospheric CH4:

Fossil and biomass burning source strengths. Global Biogeochem. Cycles 5,

25-47.

REEBURGH W. S., (1967) An improved interstitial water sampler. Limnol.

Oceanogr. 12, 163-165.

REIMERS C.E. and SUESS E. (1983) Late Quaternary fluctuations in the cycling of

organic matter off central Peru: a proto-kerogen record. In Coastal UpweUing:

Its Sedimentary Record Part A (NATO Conf. Ser.) (eds. E. Suess and J.

Thiede) pp. 497-526. Plenum Press.

REIMERS C.E., JAHNKE R.A. and MCCORKLE D.C. (1992) Carbon fluxes and

burial rates over the continental slope and rise off central California with

implications for the global carbon cycle. Global Biogeochem. Cycles 6,

199-224.

SAYLES F.L. and CURRY W.B. (1988) 613C, TCO2, and the metabolism of

organic carbon in deep sea sediments. Geochim. Cosmochim. Acta 52,

2963-2978.

SILVER_MAN M.P. and OYAMA V.I. (1968) Automatic apparatus for sampling and

preparing gases for mass spectral analysis in studies of carbon isotope

fractionation during methane metabolism. Anal. Chem. 40, 1833-1837.

SPIKER E.C. and HATCHER P.G. (1984) Carbon isotope fractionation of sapropelie

organic matter during early diagenesis. Org. Geochem. 4, 283-290.

SPIKER E.C. and HATCHER P.G. (1987) The effects of early diagenesis on the

chemical and stable carbon isotopic composition of wood. Geochim.

Cosmochim. Acta 51, 1385-1391.

STUMM W. and MORGAN J.J. (1981) Aquatic Chemistry. John Wiley and Sons,

New York.

TANS P.P., BERRY J.A. and KEELING R.F. (1993) Oceanic 13C/12C observations:

A new window on ocean CO 2 uptake. Global Biogeochem. Cycles 7, 353-368.

UNVER A.A. and HIMMELBLAU D.M. (1964) Diffusion Coefficients of CO 2,

C2H4, C3H6, and C4H 8 in Water from 6 ° to 65°C. J. Chem. Engineer.

Data 9, 428-431.

49



WELLS J.T. (1988) Accumulation of fine-grainedsediments in a pcriodicaUy

cncrgcticclastieenvironment, Cape Lookout Bight, North Carolina.J. Sed.

Pet. 58, 596-606.

WHITICAR M.J. and FABER E. (1986) Methane oxidation in sediment and water

column environments--Isotope evidence. Org Geochem. 10, 759-768.

WILLIAMS P.M. and GORDON L.I. (1970) Carbon-13:caxbon-12 ratios in dissolved

and particulate organic matter in the sea. Deep-Sea Research 17, 19-27.

5O



N94-19  -33

The Carbon Isotope Biogeochemistry of _,CO 2 Production in a

Methanogenic Marine Sediment

ABSTRACT

To investigate the relationship between _,CO 2 513C values and rates of the

dominant remineralization processes at the organic-rich field site of Cape Lookout

Bight, NC, the isotopic composition of porewater _CO 2 was measured on a seasonal

basis. The _CO 2 5t3C values varied seasonally in response to changes in rates of

sulfate reduction and methanogenesis, the dominant remineralization processes at this

site.

A tube incubation experiment was also performed to determine the isotopic

signature of the IICO 2 produced by sulfate reduction and methanogenesis. The 513C

of the ECO 2 produced in the sulfate reduction zone determined from the tube

incubation was -14.3 + 1.9, a value enriched in 13C relative to the labile organic

fraction. The 13C-enrichment may be caused by low rates of methanogenesis

occurring in the sulfate reduction zone. The 5 t3C of the IICO 2 produced in the

methanogenic zone was estimated to be +44 per mil, whereas the co-produced

methane was -65 per mil. The fractionation factor for CO 2 reduction was calculated

to be 1.055, a value in agreement with previous estimates at this site. The measured

concentration and 513C of the ECO 2 at Cape Lookout was closely reproduced by a

diagenetic model using the measured rates of sulfate reduction and _ICO 2 production,

and the isotopic signature of the IICO 2 production in the two biogeochemical zones.
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INTRODUCTION

The isotopic composition of total dissolved inorganic carbon (IICO 2) in

sediments is a unique record of diagenetic processes. Presley and Kaplan (1968) used

the isotopic signatures of IICO 2 to confmu that the downcore increases in IICO 2 from

nearshore sediments were a result of metabolic activity of organisms in the sediment.

Nissenbaum et al. (1972) identified the effects of methane production on the isotopic

composition of IICO 2. These studies were followed by numerous applications of

isotopic measurements of _CO 2 to identify the processes that produce and utilize

IICO 2 in sediments (e.g. LaZerte, 1981; Reeburgh, 1982; McCorkle et al., 1985;

Herczeg, 1988; McCorkle and Emerson, 1988).

Closed system box models were first used to try to reproduce the isotopic

signatures that were measured in the field (Nissenbaum et al., 1972; Claypool and

Kaplan, 1974; Reeburgh, 1982). Applying open system models to stable isotope

studies of both freshwater and marine studies allowed for the inclusion of diffusion,

bioturbation and sedimentation effects and yielded more information about the

processes affecting these profiles such as carbonate dissolution (McCorlde et al., 1985;

Alperin, 1988; McNichol et al., 1991), carbon input rates (McCorlde et at., 1985),

and methane oxidation (Whelen et al., 1976; Reeburgh, 1982; Herczeg, 1988;

Alperin, 1988). To date, diagenetic models of isotopic profdes have required

assumptions about the isotopic composition of the IICO 2 produced during sulfate

reduction and methanogenesis, as well as the isotopic composition of the remineralizod

organic carbon.
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Typical _.CO 2 &13C depth profiles from organic-rich marine sediments exhibit

two major trends. The IICO 2 initially becomes depleted in 13C relative to overlying

seawater _CO 2 values (typically near zero per rail) and then, at depth, reverses this

trend and becomes 13C-enriched. The initial 13C/12C gradient has been attributed to

sulfate reduction which produces _]CO 2 with an isotopic composition similar to the

organic matter that has been remineralized (typically -19 to -24 per rail in marine

sediments (Fry and Sherr, 1984). Methanogenesis is thought to cause the gradient

reversal by utilizing 13C-depleted _CO2 and leaving behind 13C-enriched _CO2

(Nissenbaum et al., 1972). To observe such profiles in typical coastal or deep sea

sediments may require analysis of several to 100's of meters of sediment because of

the slow rates of remineralization. The sediments of Cape Lookout Bight, North

Carolina (Station A-l; Martens, 1976) were chosen for this study because these trends

are fully established in the upper 40 cm of sediment due to the extremely high

remineralization rates (Chapter 2; Boehme et al., in revision).

The present study attempts to address some of the assumptions applied to

isotopic studies of IICO 2 and to identify and quantify the controls on the isotopic

composition of IICO 2 in a methanogenic sediment. Specifically, this study was

undertaken to determine quantitatively the processes controlling the isotopic

composition of _CO 2 in a methane producing marine sediment overlain by a typical

sulfate reduction zone. By coupling field and laboratory studies, the parameters that

had to be assumed in earlier models could be directly measured in order to estimate

the relative importance of the dominant processes controlling the 613C composition of
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the _ICO 2. Field measurements of _ICO 2 613C sexiimentaxy profiles indicated a

relationship between rates of the dominant processes and the resultant _ICO 2 813C

profiles. Sediment incubations were used to determine rates of _CO 2 production and

sulfate reduction as well as the 813C of _ICO 2 produced. From these measurements it

was possible to test the hypothesis that the _CO 2 813C porewater prof'des from anoxic

sediments resulted from a balance of IICO 2 produced by sulfate reduction and that

produced by methanogenesis.

Field Site

Cape Lookout Bight, North Carolina is a partially enclosed marine basin

located 110 km southwest of Cape Hatteras. Samples were collected at Station A-l,

which has been actively studied for almost 20 years (Martens, 1976; Chanton et al.,

1983; Martens and Klump, 1984; and references therein). The dominant

remineralization processes within the sediment are sulfate reduction and

methanogenesis (Crill and Martens, 1983; 1986; Martens and Klump, 1984).

Accumulation rates of 8-12 cm per year for the upper 40 cm of the sediment have

been measured at Station A-1 (Chanton et al, 1983; Canuel et al., 1990). Seasonal

temperature variations of 20°C drive changes in remineralization rates and fluxes of

the diagenetic products. Despite this scasonality, near-steady state conditions occur on

yearly time scales. Good agreement between measured and modelled nutrient profdes

suggest near steady state conditions may occur on shorter time scales as well (Klump

and Martens, 1981; Martens and Klump, 1984; Haddad and Martens, 1990; Chapter

2, Boehme et al., in revision; this study).
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METHODS

The collection and analysis of field samples for monthly profiles of _ICO 2 from

Station A-1 have been described previously (Chapter 2; Boehme et al., in revision).

A 9.5 cm diameter sediment core was collected at A-1 in June 1991 and sectioned in

the lab at 2 cm intervals down to 20 cm to conduct an incubation experiment.

Sediment temperature was 25°C, in the field at the time of core collection. Sediments

from each depth interval were homogenized and transferred into five 15 ml centrifuge

tubes via syringes. The centrifuge tubes from each of the 10 depth intervals were

capped and stored in a glove bag and kept under nitrogen at 25°C for the duration of

the incubation experiment.

One sample from each of the ten depth intervals was processed immediately

(T=0) and then every 40 to 75 hours by centrifugation (3500 rpm for 30 minutes).

The extracted porewater was taken up in a syringe, and filtered through a 0.45 p.m

nylon filter (Micron Separations Inc.). One ml of porewater was injected into a 2.5

ml serum bottle, capped and crimped for analysis of the concentration and 613C of the

IICO 2. The I_CO 2 samples were maintained frozen until the end of the experiment so

that the five samples from each depth could be analyzed on the same day. One to 3

ml of porewater was acidified and stored for Ca + + analyses. The remaining

porewater was treated with a drop of concentrated ZnCI 2 to precipitate sulfide,

filtered, and stored refrigerated for sulfate analysis.

Porewater _CO 2 samples were analyzed on a GC-TCD adapted with a vacuum

line to collect the CO 2 gas for isotopic analysis (Blair and Carter, 1992; Schaff et al.,

55



1993). The _ECO2 serumbottleswere injectedwith 0.2 ml of 1M H3PO 4 and the

resulting CO 2 was swept into the GC column containing Unibeads-ls or 2s silica gel

(Alltech) with He as the carrier gas. Water was removed using a Nation drying tube

(t'ermapure Products). Sample concentrations were determined with a thermal

conductivity detector. The CO 2 was trapped in an 1/8 inch o.d. stainless steel trap

under liquid nitrogen, and transferred to 6 mm borosilicate glass tubing for storage.

Isotopic analyses were done on a modified Finnigan Mat Delta E isotope ratio mass

spectrometer (Hayes, 1983). All isotope values are given in the 6 i3C notation (See

Eqn. 1). The precision and accuracy of the 21CO 2 concentration measurements

determined from standards is 0.5 mM and 1.0 mM respectively, and for ]]CO 2 613C

measurements, 0.3 per rail and 0.6 per rail respectively.

Porewater SO4 = samples were processed by gravimetric analysis of the

precipitated barium salt (Chanton, 1985; Chanton et at, 1987). The precision and

accuracy of this technique was 0.6 mM and 1.0 mM, respectively.

Porewater Ca + + samples were treated as described in Chapter 2. The Ca + +

measurements were analyzed on a Perkin-Elmer Atomic Absorption spectrometer in

the Soil Science Laboratory (NCSU).

RESULTS

The concentration of _1CO 2 increased and that of sulfate decreased as a function

of time in the upper 10 cm during the incubation experiment, with the most rapid

changes occurring in the upper 0-2 cm interval (Fig. 3.1). I_CO 2 813C became

progressively depleted in 13C with time for the 0-8 cm intervals, whereas the 8-10 cm
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interval becameenrichedin 13Cwith time (Fig. 3.1). The ratesof _CO2 production

andsulfatereductionweredeterminedby linear fits to the concentrationdatafor each

of the upper 0-10 cm intervals (r 2 values are given in Table 3.1). The SO4 = and

IICO 2 concentrations, and the _ICO 2 813C values showed little change with time in the

samples below 10 cm due to slow rates of remineralization and the relatively short 10-

day incubation and therefore are not shown. The Ca + + concentrations show little

change below the 0-2 cm interval (Fig. 3.5) for the upper 10 cm. The Ca + + T=0

profile did not agree well with the porewater collected by squeezer on the same day

(Chapter 2; Fig. 2.5). The poor agreement between the squeezer and centrifuged

profiles may indicate that one of these techniques causes changes in the porewater

concentrations, and therefore this data set was only used to show that there were not

large changes in porewater Ca + + over the 10 day experiment.

Using the IICO 2 concentration and 513C values, 12C and 13C production rates

were determined. Rate measurements of _CO 2 production, and SO4-- reduction for

the upper 10 cm (Fig. 3.2a) as well as _ t3CO2 and _ 12CO2 production rates

calculated using the isotopic signatures of the IICO 2 produced (Fig. 3.2b) were fit to

an exponential curve of the form:

where

Rz

Ro
a

Z

R==RoeXp(-'=)

= rate of production or reduction of process (mM/hr),

= rate at the sediment-water interface (mM/hr),

= attenuation coefficient (cm-1), and

= depth into sediment (cm).

(10)
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Valuesof R o and a were solved iteratively from measured values of Rz with the

Sigmaplot curve fitting routine (Jandel Scientific).

in Table 3.2. The _CO 2 concentration and 813C

Curve fitting parameters are given

values were used to estimate the

613C signal of the IICO 2 produced for each depth interval using the following

equation:

Sad d-
Ct8,-Co80

C_d

(II)

where

C t

8t

Co

60

Cadd

6add

= _CO 2 concentration at given time

6t3C of I_CO 2 at given time

= IICO 2 concentration at initial time zero for given depth

= 613C of _CO 2 at initial time zero for given depth

= IICO 2 concentration added between C o and C t

613C of _CO 2 added between C o and C t.

The 6ada was solved for by curvefitting the IICO 2 concentration and Y_CO 2 613C for

each depth interval and the horizontal error bars represent the standard error for each

of the values (Fig. 3.2).

The advection-diffusion model (Bemer, 1980) was used to convert the

measured ratesof sulfate reduction, IICO 2 production, 2112CO2 production and I113CO 2

production to test whether these rates are representative of in situ conditions. An

analytical solution of the advection-diffusion equation

aC D _C ¢z<9C R (12)-$ -

was found assuming igC//gt - 0 and the following boundary conditions: as C z --> **,

/9C//9-z = O; for 2ICO 2, C O = 2.11 raM, 813C = 0.0 per mil; for sulfate, C O = 29.6.
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Eqn. 12 becomes

R° (1 -exp-"_, (13)
Cz=C 0 _ a2Ds+ao

where

D s = Diffusion coefficient (D s = _2Do; _= 0.9 for upper 20 cm;
Chanton et al., 1983; Ds(HCO3") = 0.0344 cm/hr;

Ds(SO4 =) = 0.0312 cmlhr),

C z = Concentration of species at given depth z
a = attenuation coefficient (cm "1)

<z = sedimentation rate (10.6 cm/yr; Chanton et al., 1983).

Diffusion coefficients for HCO 3" and SO4 = were taken from Li and Gregory (1974)

and corrected for sediment tortuosity as noted above (Ullman and Aller, 1982). The

effects of changing porosity with depth have been shown to alter the results by less

than 4 % for Cape Lookout sediments and so porosity was assumed to be constant with

depth (Klump and Martens, 1989). The comparison of measured and calculated

concentrations and the IICO 2 613C profiles are shown in Fig. 3.3. The steady state

assumption appears to be justified given the agreement between measured and

estimated IICO 2 profiles determined from the rate measurements (Klump and Martens,

1981;1989; this study). The estimated IICO 2 613C profile shown in Fig. 3.3b, agrees

with the measured values for the upper 0-12 cm. The two profiles diverge below this

depth, because the lower boundary condition forces igC/_z to 0 at depth. The

modelled and measured SO4--- concentration also agree well, verifying the sulfate

reduction rate measurements.

The depth-integrated rates of IICO 2 production and sulfate reduction as well as

I112CO2 and I] 13CO2 were determined by integrating Eqn. 11 and multiplying by a
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porosity term (_--0.9 Cm3pw/Cm3se d ) (Eqn. 12), to compare to previous depth

integrated rate measurements:

_ p_ =fom="RoeXp-=. ([4)

The calculateddepth integratedrateof sulfatereductionof 21.3 moles-m'2-yri isin

excellentagreement with a previouslymeasured incubation experiment sulfate

reductionrateof 21.0 moles-m'2-yr"I CKlump and Martens 1989) and comparable to

previously measured ratesof sulfatereductionfor June 1978 of 19.3 + 3.4 moles-m-

2-yr'land June 1979 of 24.3 + 3.0 moles-m'2-yr'l(Martens and K1ump, 1984). The

depth integratedIICO 2 production of 34.6 moles-m2-yr "I alsoagrees well with a

previous incubationexperiment rateof 34.0 moles-m'2-yr"l (Klump and Martens

1989) and iscomparable to lICO 2 fluxesof 38.9 + 0.8 moles-m'2-yr-I measured in

June 1978 (Martens and Klump, 1984).

DISCUSSION

The lICO 2 813C profdcs measured at Cape Lookout are typicalof anoxic

marine sediments, with a zone of 13C-depletionoverlying a zone of 13C enriched

_CO 2. These profilesare thought to resultfrom sulfatereductionproducing I]CO 2

thatisisotopicallysimilarto the organic matter being oxidized in the upper zone and

methanogenesis generating 13C-enriched lICO 2 at depth. Additionally,13C-depletions

have bccn attributedto methane oxidationadding 13C-depleted IICO 2 in the sulfam

reductionzone, particularlynear the transitionbetween the sulfatereductionand

methane production zones (Reeburgh, 1982; Whiticar and Faber, 1986). In studies
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where methane oxidation has been shown to be important, the resultant _CO 2 may be

distinguishable by the 13C-depleted nature and the concave-up sedimentary methane

concentration profiles. At Cape Lookout, methane oxidation is not an obvious control

on the _ CO 2 813C values, and appears to affect only the surficial sediments based on

flux experiments and sedimentary CH 4 813C profdes (See Chapter 2, Fig. 2.4;

Boehme et al., in revision). The agreement between methane production rates and

observed fluxes (Crill and Martens, 1986) is further evidence against significant

methane oxidation at this site.

The _CO 2 813C profiles from Cape Lookout also exhibit seasonal changes

(Chapter 2; Boehme et al., in revision) If sulfate reduction and methanogenesis axe

controlling the isotopic signature of the IICO 2, then the seasonal trends seen in the

isotope profiles should correlate to the changing rates of these processes. This can be

tested directly using the measured monthly profiles of Y.CO 2 8t3c.

Further, if these processes are occurring in distinct zones, namely sulfate

reducing bacteria out-competing the methanogenic consortia down to the depth at

which sulfate is depleted, then the isotopic signal of Z CO 2 being produced should

reflect this zonation and should be expressed in the incubation experimental results.

The measured isotopic signature for the IICO 2 produced in the sediment generally

reflects this zonation (Fig. 3.2b).

The use of exponential fits to the _ 12CO2 and the Y, 13CO2 rate measurements

results in an estimated 813C produced that does not reflect the observed zonation in

I112CO2 and I113CO2 production (Fig 3.2b). This is not surprising considering that the
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Y,12CO2 and _ 13CO2 rate data may not be described by a simple exponential function

because these rates result from the addition of two separate processes, sulfate

reduction and methanogenesis, with different rates. The exponential fits, despite these

problems reproduced the concentration and estimated isotope signatures of the _,CO 2

measured in the sediment (Fig. 3.3; see discussion below). A comparison of

exponential fits to cubic spline fits resulted in little differences in the estimated IICO 2

613C profiles. The curve fits were used to determine depth integrated rates for

modelling of individual processes. The depth integrated rates determined are

consistent with previously measured rates for this site.

Field Studies

Seasonal changes in the _ICO 2 613C profiles from Cape Lookout (Chapter 2,

Fig. 2.2; Boehme et al., in revision) appear to result from the changing rates of

sulfate reduction and methanogenesis, the changing depths of sulfate depletion and

possibly by changes in methanogenic pathways. This relationship can be seen

qualitatively in the steepening concentration gradients and changing porewater _CO 2

isotope profiles in Fig. 2.2. In an attempt to quantify this relationship, sulfate

concentration gradients and the isotopic gradient for the upper 3 cm of the sediment

are compared in Fig. 3.4. Increasing rates generaUy correlate with increasingly laC-

depleted gradients, however, this comparison does not include the effects of

methanogenesis on the isotope profiles. Methane production is altering the isotopic

signature of the _CO 2 flux. Further, for most of the year methane is produced

predominantly via CO 2 reduction, however in July and August, some fraction of the
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methaneappears to be produced by acetate dissimilation (CriU and Martens, 1986;

Blair et al., 1993). The smaller fractionation factor associated with acetate

dissimilation may further alter the relationship between the sulfate concentration

gradient and isotopic gradient for the months when acetate dissimilation is important.

The comparison shown in Fig. 3.4 suggests a simple correlation, that IICO 2

613C values at the sediment surface are dependent on the concentration gradients of

sulfate reduction. This may be a useful observation for understanding the range of

isotopic signatures that are measured in other field sites, especially environments

where methane production is not important. The data imply that if the isotopic

signature of the two dominant processes controlling _ CO 2 concentration in Cape

Lookout sediments can be determined, then the overall _CO 2 isotopic signature

should be predictable based on the changing rates of these two processes.

Incubation Experiment

The incubation experiment was performed to measure directly the isotopic

signature of the IICO 2 being produced as a function of depth. Variation with depth in

the isotopic composition of the IICO 2 produced for the upper I0 cm are shown in Fig.

3.2b. For the upper 8 era, the isotopic signature is relatively constant. The 8-10 cm

interval is markedly 13C-enriched with an isotopic signature of +2 -t- 1.9 per rail.

The two distinct zones are consistent with biogeochemical arguments that have

theorized little overlap between the sulfate reduction and methanogenic zones. The

isotopic signature of the IICO 2 in the upper 8 cm is enriched in 13C relative to the

metabolizable organic carbon being at Cape Lookout (-19 per rail; Chapter 2; Boehme
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et al., in revision). This may indicate some methane production in the sulfate

reduction zone. This hypothesis is consistent with previous measurements of methane

production in the sulfate reduction zone (CriU and Martens, 1986). There are other

possible causes for this enrichment of the I1CO 2 that can be considered.

One source of 13C enriched _ICO 2 to porewaters is the dissolution of calcium

carbonate. Porewater concentrations of Ca + + were measured during the incubation

experiment and suggest some dissolution in the upper 0-4 cm (Fig. 3.5). The previous

Ca + + measurements for this site also show an increase in the upper two cm indicating

dissolution (Chapter 2, Fig. 2.5; Boehme et al., in revision). The increases,

however, are not large enough to account for an offset of -5 per rail (-19 per rail

organic carbon to the -14 per rail average isotope value for the upper 8 cm) assuming

an isotopic composition of the CaCO 3 of -0.1 per rail (the average isotopic

composition of the particulate inorganic carbon at Cape Lookout). Further, the Ca + ÷

profiles measured during the incubation experiment do not indicate dissolution below

the 0-2 cm interval over the 10 day incubation experiment (Fig. 3.5). Thus, the

isotopic composition of the IICO 2 produced should therefore not be significantly

affected by calcium carbonate dissolution. This conclusion could be erroneous if

dissolution was coupled with precipitation in an exchange reaction. Exchange

reactions have been hypothesized to account for differences in modelled and measured

IICO 2 813C profiles from turbidites (McArthur, 1989) but have typically been ignored

because they are considered to be too slow to significantly alter the isotopic

composition of rapidly depositing sediments (Nissenbaum et al., 1972). The isotopic
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compositionof the particulate inorganic carbon is relatively constant with depth

(Boehme et al., in revision; Boehme, 1989), however, the possibility of isotopic

exchange reactions during dissolution and precipitation of CaCO 3 has not been

adequately addressed.

Another possible cause of the relatively 13C-enriched Y'CO2 in the sulfate

reduction zone is the preferential remineralization of a 13C-enriched organic carbon

fraction during sulfate reduction. A long-term incubation study using sediments from

Cape Lookout estimated the 813C of the organic matter remineralized during sulfate

reduction to be -15.6 per mil (Alperin et al., 1992). If the sulfate reducing bacteria

do not significantly fractionate the organic matter during remineralization, then the

IICO 2 should be similar to the remineralized organic carbon. Preferential

remineralization is not consistent with the particulate organic carbon (POC) 513C

profiles for this site that indicate that the 8 value of the organic carbon does not

change with depth (Haddad, 1989; Blair and Carter, 1992; Chapter 2; Boehme et al.,

in revision). If sulfate reduction, the dominant remineralization process in these

sediments, is preferentially removing organic carbon with a different isotopic signature

than the bulk organic carbon, then this should cause be evident in the POC 513C

profiles.

If methane production is occurring within the sulfate reduction zone, 13C-

enriched Y,CO 2 would be added to the pool of II CO 2 produced by sulfate reduction.

This is consistent with incubation measurements of methanogenic rates measured by

CriU and Martens (1983; 1986) in which low rates of methanogenesis via CO 2
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reduction were measured within the sulfate reduction zone using incubation

experiments and t4C tracers, especially in the summer months when sulfate is rapidly

depleted by 8 to 10 cm. As will be shown later, these rates of sulfate reduction and

methanogenesis can be used in conjunction with an estimate of the isotopic signature

of the I_CO 2 produced from these processes to estimate a _CO 2 813C value produced

in the sulfate reduction zone. Studies have shown that methane production via non-

competitive substrates such as methanol and methylamines can also result in methane

production (and presumably I_CO 2 production as well) in salt marsh sediments (King,

1984; King et al., 1985; Oremland et al., 1982; 1993).

The successful use of the rate measurements to estimate _ICO 2 concentration

and 6 t3C profiles indicates that a simple two component mixing model can be used to

estimate the isotopic signature of the IICO 2 produced from an anoxic sediment like

Cape Lookout. The mixing model assumes that the isotopic signature of the _ICO 2

results from the mixing of two sources--oxidative source (sulfate reduction) and

methanogenic. This hypothesis can be described mathematicaUy as a mass balance of

the processes producing IICO 2 in the sediment,

where:

CO2)  sR +R( ,CO2)u u

l_ot

8tot

R(_CO2)sR

8SR

R(IICO2) M

8M

= IlCO 2 total production rate (mM/hr),

= isotopic signature of I_CO 2 produced,

= _CO 2 production from sulfate reduction rate (mM/hr),

= isotopic signature of IICO 2 from SR

= IICO 2 production from methanogenesis rate (mM/hr),

= isotopic signature of _CO 2 from methanogenesis.

(15)
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The sourcesof the 13C-enriched IICO 2 produced in the sulfate reduction zone cannot

be resolved by this study, but the measurement of this isotope signature aUows us to

model the processes producing these signals in an effort to test some of the hypotheses

given here.

The IICO 2 produced and its isotopic signature were used to determine the 12C

and 13C production rate profiles individually. These profiles were curve fit and

extrapolated to estimate the isotopic signature of the IICO 2 added to the surface

sediments due to sulfate reduction, -19.2 per mil. This value is assumed to be the

best guess value for the isotopic composition of the IICO 2 produced from sulfate

reduction alone (SSR) because the surface sediments should be the least affected by

methanogenesis.

The sulfate reduction rate, RSR, can be used to determine the depth integrated

rate of Y.CO 2 produced from sulfate reduction,

(16)

where x = 1.78, the ratio of IICO 2 produced to sulfate reduced at the sediment-water

interface. The stoichiometric coefficient, x, is assumed to be constant downcore.

This assumption is supported by degradation studies of algae where the calculated

composition of the refractory material (calculated as percent proteins, lipids and

carbohydrates) was similar to the original composition of the algae (Force and

McCarty 1970) suggesting that no one algal component was preferentially utilized

producing a different ratio of Y_CO2 produced to algae degraded. Previous estimates
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of "_for Cape Lookout surface sediments, of 1.7 + 0.1 (Alperin et al, 1992) and 1.9

(average of upper 6 cm; Klump and Martens, 1989) supports the • value used in this

study. Factors controlling • are discussed in further detail in a later section.

The net production of _CO 2 during methanogenesis, R M is calculated by

subtracting R(_CO2)sR from Rtot. The depth integrated 8 value of _CO 2 produced,

8to t was estimated from the isotopic signature of the depth integrated 2] 12CO2 and

2]Z3CO2 production rates, -13.1 per rail. Solving Eqn. 15 for 6 M gives +44.2 per mil

for the isotopic composition of the _,CO 2 produced during methanogenesis. Using the

values for _CO 2 production from sulfate reduction (-19.2 per mid and methanogenesis

(+44.2 per mid and the estimated production rates, a _CO 2 613C mixing curve was

calculated and compared to the measured isotopic signature of the 2]CO 2 produced

(Fig. 3.2b). The mixing curve misses the zonation of sedimentary processes, similar

to the exponential curve fit results, but the mixing curve is derived from the

exponential fits and so the similarity is not unexpected. As noted previously, the

estimated concentration from the rate curve fits agrees well with the data. The

differences in the curve fits and the measured data are probably not strongly reflected

in the estimated isotope prof'des because the production rates axe low at depth.

Based on mass balance arguments, it should be possible to estimate the isotopic

composition of the CH 4 produced in the incubation experiment using the following

equation,

(17)

68



where

RCH4

6 CH4

5 retain

= rate of methanogenesis (mM/hr),

= isotopic signature of methane produced,

= (-18.9 per rail; Boehme et al., in revision).

To estimate the rate of methane production, the rate of I:CO 2 produced during

methanogenesis can be used in the following stoichiometric relationship:

(18)
"

The x-1 parameter was determined based on oxidation state arguments and will be

discussed later. Solving Eqn. 17, the isotopic composition of the methane produced in

the sediments is -65.9 per rail. This value is very similar to the measured isotopic

signature of methane bubbles collected at the same site in June 1983 and 1984 (-64.3

+ 0.7; Martens et al., 1986). The mass balance equations accurately estimate the

isotopic composition of the methane being produced in this sediment. This is further

verification that the mass balance achieved using measured rates of _CO 2 production

and sulfate reduction adequately represents controlling diagenetic processes.

As noted earlier, the calculated 613C for Y_CO 2 produced via sulfate reduction

(-19 per mid and methanogenesis (+44 per rail) can be used to estimate the isotopic

signature of the IICO 2 produced in the sulfate reduction zone using previously

measured rates from Crill and Martens (1983). The rates of sulfate reduction and

methane production from the summer months were averaged for the upper 1- 4 cm

and 6-1 lcm (the depths above where sulfate was depleted) and converted to Y_CO 2

production rates using 1: and x-1. The resultant rates were used with the calculated
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8t3C for _CO2 producedvia sulfatereduction(-19 per mil) and methanogenesis(+44

permid to estimatea 613Cfor _ICO2 producedof -18 per mil for the upper4 cm and

-13 per mil for the6-11cminterval. Thesecalculationssuggestthat methane

production in the sulfate reduction zone can significantly affect the 6 X3C of the _.CO 2

produced and may be responsible for the X3C-ertriched _CO 2 seen in the sulfate

reduction zone.

The determination of the isotopic composition of the methane produced in the

sediment aUows us to calculate the fractionation factor for the production of methane,

lSC(co_ +10 s
= = (19)

51SCtcn, O+10 a'

where 613C(cH4) is -65.9 per mil as calculated above and 6CO 2 is the isotopic

composition of the CO 2 measured in the methanogenic zone. Using a pH of 6.95 for

A-1 sediments (Chanton, 1985; N.E. Blair et al., 1993), the relative contributions of

HCO3", CO 2, and CO3 = can be determined (Stumm and Morgan, 1981). At 8-10

cm, the measured IlCO 2 813C is -7.0 per mil (Fig. 3.3). To determine the isotopic

composition of the CO 2 species, the following equations (Deines et al., 1974;

Friedman and O'Neil, 1977; Blair et al., 1993) were solved simultaneously:

"C(ZCO@ 'Sc(co2)+e HCOs3+Ya'Sc(co[)
(20)

•HCOs, 10a+81ac(HcOD

)- I03+  3C(C02)
(21)
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a sc( cos]  3c(co ) (22)

The variables d, e, and f represent the fractions of the dissolved _]CO 2 components.

The 613C of HCO 3" and CO 3 = are assumed to be the same (Eqn. 22). The

equilibrium fractionation factor for the HCO 3- and CO 2 equilibrioum is given by:

i ,xco;,
n¢ t _ I =(-_) -0.0241 (23)

Temperature is in Kelvin (Deines et al., 1974) Solving Eqns. 20, 21, 22 and 23 gives

a 613C value for CO 2 of -14.0 per mil. Substituting this value into Eqn. 19 gives an

¢x for methane production of 1.055. This fractionation factor is remarkably similar to

an independent estimate for this site, based on a mechanistic model (1.056 at 25"C;

Blair et al., 1993) and is within the range determined in culture studies (1.03 to 1.06;

Games et al., 1976; Fuchs et al., 1979; Balabane et al., 1987; Belyaev et al.,1983)

and estimated from measured profiles of _]CO 2 and CH 4 (1.05 to 1.09; Whiticar et al.,

1986). The agreement is further evidence to support the model results. This is the

first in situ fractionation factor for methane production from CO 2 reduction

determined using directly measured rates and the associated isotopic signatures.

Model Sensitivity to Reaction Stoichiometry

The isotopic composition of the II CO 2 produced during sulfate reduction and

methanogenesis, and the isotopic composition of the methane that were estimated using

the mass balance approach are sensitive to the stoichiometries of the sulfate reduction

and methane production reactions. The 6CH 4 is especially sensitive to the
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stoichiometry as is seen in Fig. 3.6. These stoichiometries are dependent on the

apparent oxidation state of the organic carbon that is remineralized. For the

generalized formula CxHyO z, the apparent oxidation state of the carbon is defined as

OS= 2z-Y for-4sOS_4. (24)

for the reaction

where

c ,o,÷wSO2-.co2÷s"+ H20 , (25)

u 8 (26)
w 4-08

Similarly for the methanogenic reaction,

2cj-lp=-.uCO 2+vCH 4
(2"/)

the ratio of CO 2 produced to CH 4 produced (u/v) is given by

u=4+0$ =.__1. (28)
v 4-0S

The relationship between 1:-1, the ratio of CH 4 to IICO 2 produced, and oxidation state

has been demonstrated in culture experiments (Tarvin and Buswell, 1934; Fig. 3.7).

Solving Eqn. 28 for oxidation state using x = 1.78 from the model, gives an

apparent oxidation state of the organic matter of -0.49. Using the 1: determined by
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Alperin et al. (1992) of 1.7 + 0.1 gives an OS values of -0.72 5:0.28 and using the

determined by Klump and Martens (1989) of 1.9 gives an OS value of -0.21.

An independent estimate of oxidation state of the remineralized organic matter

can be determined from the composition of the remineralized organic matter. At Cape

Lookout, 64 +_ 17% of the metabolized organic carbon has been identified as

carbohydrates, lipids and amino acids, in a ratio of 1.0:1.0:1.9. Using the equation,

OS = (3a+2b+2.z-y) (29)
X

to describe the oxidation state of amino acids with the formula CxHyNaOzSb and the

amino acid distributions identified at Cape Lookout sediments (Burdige and Martens,

1988), the average oxidation state of the amino acid carbon is estimated to be 0.07.

The carbohydrate carbon is assumed to have an average oxidation state of zero. The

C16 fatty acid was used as a representative lipid for this system (Haddad, 1989) wi'_

an oxidation state of -1.75. Given the relative contribution of these fractions to the

identified pool, the apparent oxidation state of the identified metabolizable pool is

-0.41, in good agreement with the modeled value of -0.49. The OS determined from

the organic matter can be applied to Eqns. 26 and 28 to estimate a • of 1.81, in

excellent agreement with the 1.78 determined from this study. McCorkle and

Emerson (1988) calculated CO2/O 2 ratios for a variety of oxic and suboxic sediments.

Assuming that oxidation state is the only factor controlling this ratio, their value of -

0.54 is consistent with the x determined for Cape Lookout. Gujer and Zehnder

(1983) also noted a relationship between oxidation state, substrate, and CO 2 to CH a
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ratios for anaerobicdigesters. Basedon their correlations, the substrates that correlate

to the oxidation state estimated for Cape Lookout are algae, bacteria, carbohydrates

and proteins. The agreement of these various approaches to determining the OS and

stoichiometries of sulfate reduction and methanogenesis is further evidence that despite

the sensitivity of the model to these parameters (Fig. 3.6), our model is accurately

deseribing the processes and their isotopic signatures in this system.

Implications for Control of Marine CH 4 813C

Marine CH 4 813C values exhibit a wide range of values (-110 to -60 per mil;

Whiticar et al., 1986). Possible sources of this variation must be due to differences in

the relative rates of methanogenic pathways (predominantly CO2-reduction and acetate

dissimilation), differences in fractionation factors, and the isotopic composition of the

precursors. The mass balance model presented here indicates that the 8CH 4 is also

dependent on the relative rates of non-methanogenic oxidative processes (sulfate

reduction in this study) and methanogenesis. Further, the model's sensitivity to

oxidation state suggests that oxidation state may be important as well.

CONCLUSIONS

The _ICO 2 813C profiles from Cape Lookout have been shown to be dependent

on the rates of the remineralization processes, similar to the results of McCorkle and

Emerson (1988). In the methanogenic sediments of Cape Lookout, the IICO 2 813C

primarily reflects changes in sulfate reduction rate and methanogenesis. The

sedimentary profiles are best described by the mixing of IICO 2 from two processes:

sulfate reduction, producing IICO 2 with an isotopic signature of -19.2 per rail, and
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methanogenesis,resultingin IIC0 2 with an isotopic signature of +44.2 per mil. The

mass balance calculations generated a reasonable isotope value for methane and a

reasonable fractionation factor for methane production. However the calculation is

very sensitive to the reaction stoichiometry.

The mass balance approach used suggests that the isotopic signature of both the

IICO 2 and methane are sensitive to the ratios of IICO2/SR and IICO2/CH4 that are

ultimately dependent on the oxidation state of the organic matter being remineralized.

The oxidation state determined from the incubation experiment agreed with a

calculated OS based on the identified fraction of the organic carbon remineralized.

We hypothesize that the ratio of sulfate reduction to methanogenesis may be an

important contribution to the range of CH 4 isotope values observed in the marine

environment. This may ultimately be useful in interpreting _CO 2 8 t3C proftles in

other environments as well as the isotopic signature of diagenetic carbonates.
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Fig. 3.1 IICO2, sulfate and _CO 2 613C data for the five depth intervals. The

_CO2, _ 12CO2, _ 13CO 2 and sulfate concentrations were fit to a line to

determine rates for each depth interval.
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Fig. 3.2 (A) Measured rates (symbols) and curvefits to rates (lines) of _CO 2

production and sulfate reduction. (B) Isotopic signature of the _CO 2

produced in the upper 10 em (symbols) determined using Eqn. 11.
The solid line is the 8 laC of the ratio of the curvefits of the

individual I112CO2 and I113CO2 production profdes. The dotted line

( ...... ) is a mixing curve based on the ealcualted rates of sulfate

reduction and methanogenesis and the associated end member isotopic

signatures. The dashed line (- - -) is the ratio of depth-dependent

production ratesof II12CO_ and I113CO2 solved for using the measured

IlCO 2 concentrationand 8_3C profileand the diagcncticequation

(Eqn. 12).
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Fig. 3.3 The measured concentrations of IICO 2 and sulfate (symbols) and the

model estimates determined using Eqn. 12 and the rate data shown in

Fig. 3.2 (solid line) (A). The measured isotopic signature of the _ICO 2

(symbols) and the modelled estimates determined using Eqn. 12 and the

individual rates of I112CO 2 and I113CO2 production (solid line) (B).
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Fig. 3.4 The sulfate gradient versus the IICO 2 613C gradient for the upper 3 cm

of sediment from porewater profiles collected from 1986 to 1991 at

Cape Lookout. The sulfate and _CO 2 &13C gradients were based on

linear fits of concentration over the upper 3 cm (one cm intervals).
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Fig. 3.5 Porewater Calcium concentration versus time for the upper I0 cm from

the incubation experiment.
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Fig. 3.6 The relationship between the oxidation state of the organic carbon, the

ratio of _CO 2 produced to sulfate reduced (x) and the modelled isotopic

signature of the methane produced.

86



It)

I

I

0

o
I

I

0

I

_I_%g uo!_p!xo

87



Fig. 3.7 The relationship of the relative rates of CO 2 arid CH 4 production (x-l)

and the apparent oxidation state (OS) of the fermented material. Data is
from Tarvin and Buswell (1934). Curve is described by Eqn. 18.
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Table 3.1 Regression coefficients (r2) for the SO4 =, _CO 2, and _CO 2 813C

incubation data

Depth SO4 = ZCO 2 IICO 2 6 t3C

0-2 cm 0.92 0.99 0.99

2-4 cm 0.94 0.98 0.98

4-6 cm 0.75 0.96 0.96

6-8 cm 0.85 0.89 0.89

8-10 cm 0.56 0.84 0.84
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Table 3.2 Curve fit parameters, estimated depth integrated rates (10 cm), and

associated isotopic compositions from tube incubation experiment.

Process

I_CO 2 Produced
from Sulfate

Reduction

XCO 2 Produced
from

Methanogenesis

Methane Produced

Sulfate Reduction

R 0 a

0.103

0.103

0.058

0.2037

0.2341

0.2341

*Depth

Integrated

Rate

0.439

0.397

0.0420

0.0539

0.223

813C

-13.1

-19.2

+44.2

-65.9

*Units of mmol*cm2*hr "1
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ABSTRACT

The natural abundance 13C/12C ratio of methane from anoxic

marine and freshwater sediments in temperate climates varies

seasonally. Carbon isotopic measurements of the methanogenic

precursors, acetate and dissolved inorganic carbon, from the marine

sediments of Cape Lookout Bight, North Carolina have been used to

determine the sources of the seasonal variations at that site.

Movement of the methanogenic zone over an isotopic gradient within

the dissolved CO 2 pool appears to be the dominant control of the

methane 13C/12C ratio from February to June. The onset of

acetoclastic methane-production is a second important controlling

process during mid-summer. An apparent temperature dependence on

the fractionation factor for CO2-reduction may have a significant

influence on the isotopic composition of methane throughout the

year.
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INTRODUCTION

Methane, like other carbon-containing materials, is comprised

of approximately 99% 12C and 1% 13C (20). Small but distinct source-

related variations in the 13C[12C ratio are well documented (52,59).

It is important to understand the processes which control the

isotopic composition of methane for a variety of reasons. The

13C[12C of biogenic methane may provide information concerning the

methanogenic ecosystem and the relative rates of methane-producing

pathways as a function of season (7,9,15,44) or environment (59i.

The increasing concentration of tropospheric methane and its

potential impact on global temperature and the stratospheric mixing

ratios of water vapor and chlorine radicals (8,16,25) require a

better understanding of the sources and sinks of that gas. A carbon

isotope budget of atmospheric methane which includes seasonal

effects would be a powerful constraint on source estimates (44,55).

An understanding of the controls of the isotopic composition of

biogenic methane would also aid hydrocarbon exploration as

approximately 20% of the world's natural gas resources are biogenic

in origin (50).

Attempts to model the carbon isotopic composition of methane

have been hampered by insufficient information concerning the rates

of the methanogenic processes and the isotopic signatures of the

methanogenic precursors. Early models used a Rayleigh distillation

calculation to simulate the isotope effects associated with methane

production in a marine sediment (17,46). These models had three
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major assumptions: 1. Methane was produced only via C02-reduction,

2. Net CO 2 consumption occurred in the methanogenic zone, and 3.

The system was closed to material fluxes of CO 2 and CH 4. No

information was available concerning the importance of acetate

dissimilation or other pathways. Ignoring the C02-production which

occurs during methanogenesis (57) led to a significant error in the

models. Subsequent treatments, which involved freshwater systems,

considered both C02-reduction and acetate dissimilation pathways as

well as net C02-production in the methanogenic zone (28,36). It was

assumed that the acetate was utilized only by methanogens in the

methanogenic zone, a point which is contradicted by 14C-tracer

studies (12,37,60). The isotopic composition of sedimentary acetate

was not measured in those studies.

This report reviews our attempts to model the carbon isotopic

composition of biogenic methane (5; N.E. Blair and S.E. Boehme,

submitted). The ultimate goal of this project is to determine the

source of the seasonalvariations observed in the 13C/12C ratio of

methane from the organic-rich marine sediments of Cape Lookout

Bight, North Carolina (44). In general, the 13C/12C ratio increased

in the summer months when methane production rates were h/ghest

(Table i). Similar seasonal variations have been observed in

freshwater environments (15) and may be a common phenomenon. The

general approach in this project has been to measure the natural

abundance 13C/12C ratios of methanogenic precursors, CO 2 and

acetate, and combine those values with estimates of the relative

rates of C02-reduction and acetate dissimilation, to simulate the
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seasonal variations with an open system model. In doing so,

hypotheses concerning the controls of the isotopic composition of

methane are tested. In a second study reported in this volume,

results from a laboratory microcosm experiment are used to test the

model (i).
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Field Site

Cape Lookout Bight, North Carolina, is a 1-2 km 2 coastal basin

located 115 km SW of Cape Hatteras on the Outer Banks (Fig.

1;40,43). Fine-grained sediment, with an organic content up to 4%

dry weight (41), accumulates at a rate of 8-12 cm/yr (11,13) at the

sampling station, A-I. The organic matter appears to be derived

from phytoplankton and seagrass debris (32).

The rapid flux of metabolizable organic matter to the seabed

results in a high rate of organic carbon remineralization (41).

Sulfate reduction, occurring in the upper 10 cm of sediment during

summer months, and methanogenesis, which occurs in the underlying

zone (21), are the dominant diagenetic processes at this site and

respectively account for 68±20% and 32±16% of the organic carbon

remineralization (41). Approximately 20-30% of the methane is

produced via acetate dissimilation and the remainder of the gas is

formed primarily by C02-reduction (22).
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All 13C/12C ratios (R)

is defined (20) as:

are reported in the 613C notation which

613C =[ (Rsample - RpDB)/Rpvs] X 103 .

Rpo B is the carbon isotopic ratio of _.e. international standard,

Peedee Belemnite, and has the accepted value of 0.0112372 (33).

The preparation of samples for isotopic analysis is discussed below

in the appropriate sections.

Diver-collected cores were obtained at A-1 with 9.5 cm

diameter lucite tubes. Pore water samples for sulfate and ZCO 2

measurements were collected with a sediment press (49). Pore water

samples for acetate 613C measurements were isolated with the press

or by centrifugation. The porewater samples were frozen immediately

after collection and stored at -86°C until analysis.

The acetate samples were treated as described previously

(5,6,7). The acetate fraction was isolated by a series of

cryogenic distillations coupled with a preparative liquid

chromatography step. The acetate was converted to CO 2 for isotopic

analysis with a gas chromatograph - combustion system (24,39).

The isotopic analysis of the acetate methyl group was

accomplished by the pyrolysis of sodium acetate (6,45,47). A 200:1

mixture of NaOH and acetate (from the last distillation) was dried

under N 2 at 135°C in a quartz tube (9 mm i.d. x 20 cm long). The

tube was evacuated after drying and heated to 500°C. Methane, which



is derived from the methyl group, was quantitatively collected,

measured and injected into the gas chromatograph-combustion system

via a Toepler pump.

One to two milliliter subsambles of porewater were injected

into evacuated 120 ml serum bottles (Wheaton) sealed with crimped

20 mm rubber stoppers (Alltech Assoc.) and frozen until analysis

for ZCO 2 concentrations and 613C values. Immediately prior to

analysis, one ml of IM phosphoric acid saturated with cupric

sulfate was added to the thawed sample. The cupric sulfate was

added to precipitate sulfide. The resulting CO 2 was removed from

the bottle through a 23 gauge hypodermic needle connected to a

vacuum line via a 1/4" Ultratorr union (Cajon). The CO 2 was

purified cryogenically, quantitated with a manometer and sealed in

a 6 mm o.d. pyrex tube for isotopic analysis. The analytical

precision and accuracy of the ZCO 2 extraction procedure were ±4%

and ±0.SmM respectively as determined by the measurement of CO 2 and

bicarbonate standards (S.E. Boehme, M.S. thesis, North Carolina

State University, Raleigh, 1989). The accuracy of the 613C

measurements, as determined by the analysis of the NBS-20 carbonate

standard (19), was ±0.02 per mil.

The methane bubbles were collected from stirred sediment and

stored in sealed bottles (44). The methane was converted to CO 2 at

780°C with CuO and purified cryogenically for isotopic analysis

(24,39) .

The 613C measurements of the CO 2 from the various preparations

were analyzed on either a modified Nuclide 6-60 RMS (NASA-Ames
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Research Center) or one of two FinniganMAT 251 mass spectrometers

(NCSU Stable Isotope Laboratory and the University of Georgia

Center for Applied Isotope Studies). A cross-calibration of a CO 2

standard by the three facilities produced results consistent to

within 0.25 per mil. Procedural blanks were collected and used to

correct the results of all analyses.

Dissolved sulfate was measured on 5 mL of pore water by the

gravimetric analysis of the precipitated barium salt (J.P. Chanton,

Ph.D. thesis, Univ. North Carolina, Chapel Hill, 1985; 14). Sulfide

was removed immediately after the recovery of the pore water sample

by the addition of ZnCI 2 followed by the filtration of the zinc

sulfide precipitate. The accuracy of this procedure is typically

±0.5 mM.
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RBSULTS/%ND DISCUSSION

Ebullition is the primary mode of transport of methane from

the sediments of Cape Lookout Bight, accounting for approximately

86% of the total flux of 7.4±2 mol-m-2-yr -1 (41,42, S.E. BoehMe et

al., in prep.). The rapid bubble transport from the methanogenic

zone through the overlying sediments limits the exposure of the

methane to oxidizing conditions which could alter its isotopic

composition (2,18). Concordance between the 613C values of

naturally- and diver-released bubbles and pore water methane

supports that conclusion (44). Thus the 613C value of the methane

is controlled primarily by its production.

In organic-rich marine sediments, methane is formed by CO 2-

reduction (17,22,46) and acetate dissimilation (22,35) with the

latter process accounting for 20-50% of the total production.

Accordingly, the isotopic composition of methane produced will be

the result of a mass balance of material from those two sources.

The isotopic composition of the methane from each pathway is

dependent on the isotopic composition of the precursor, CO 2 or

acetate, and the fractionation factor, u, (k12/k13) associated with

each process.

Acetate Dissimilation

Acetoclastic methanogenesis is accomplished by the

Methanosarcina and Methanothrix genera (58). Acetate is converted
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to acetyl-CoA, after which the carbon-carbon bond of the acetyl

moiety is cleaved (31,58). The methyl is reduced to methane and the

carboxyl is oxidized to CO 2 (10,54,61). The fractionation factor

associated with the formation of methane via acetate dissimilation

by cultures of Methanosarcina barkerii is 1.02-1.03 (34; J.B.

Risatti amd J.M Hayes, Geol. Soc. Am. Abstr. Progr.,1983, 15:671).

The 613C value of the acetate methyl group and the in situ

fractionation factor for acetate dissimilation in Cape Lookout

Bight sediments have been determined via intramolecular carbon

isotope measurements of acetate isolated from pore water samples

(5,7). The 613C value of the total acetate molecule ranges from -

17.6 per mil in non-methanogenic surficial sediments to -2.8 per

mil in methane-producing sediments (Fig. 2; 5). Near the sediment

surface, the similarity of the 613C value of the acetate to that of

the average particulate organic carbon fraction (-19.1±0.3; 5,7)

indicates that little net fractionation occurs during acetate

cycling in the sulfate-reducing zone. However, a large

fractionation occurs in the methanogenic zone which leaves the

acetate enriched in 13C.

Isotopic analysis of the methyl group and a mass balance

calculation of the 613C value of the carboxyl group indicates that

the fractionation affects both carbon atoms of acetate (Fig. 2).

The magnitude of the 13C-enrichment correlates well with the

parameter f, which is defined by the equation

f = rCH4/(rcs4+rc02) (x)
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where rCH4 and rco 2 are the respective rates of the conversion of

the acetate methyl group to CH 4 and C02 (5). The downcore profile

of f (Fig. 2) was determined from the turnover rate of U-14C

acetate in Cape Lookout sediments (22,51). On average, 38±11%

(f=.38) of the methyl group is reduced to methane in the uppermost

sediments of the sulfate-depleted zone (10-20 cm) at this site.

The in situ fractionation factor for the dissociation of the

methyl group from acetate (udi..) was estimated with the equation

_diss = 1 + (6ob , -6syn)/[f(6syn + 103) ]
(2)

where 6ob s is the average 613C value of the methyl group in the i0-

20 cm interval (-11.2±3.0) and 6sy n represents the 613C value of the

newly synthesized acetate (5). The average 613C value of the methyl

group in the 0-5 cm interval (-23.2±2.2) was used as an estimate

for 6sy n because, as noted earlier, the similarity of the isotopic

composition of the total acetate from that interval with the

particulate organic fraction suggests that little fractionation

occurs during the synthesis or uptake in the surficial sediments.

The assumption is made that the synthetic isotope effect is also

small in the methanogenic zone. It is assumed that the

fractionation factor for the conversion of acetate to CO 2 and other

non-methane products is 1.000. Using f=.38±.11, Udiss was calculated

to be 1.032±0.014. The excellent agreement between our estimate of
s

the in situ _diss with the culture-derived values of 1.02-1.03 (34;

J.B. Risatti and J.M. Hayes, Geol. Soc. Am. Abstr. Progr. 15:671)
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indicates that our assumptions are reasonable to a first

approximation.

Under steady state conditions (33), the 613C value of the

methane produced from acetate is given by

613C(CH4/Acet) = 6sy n - (l-f) (udlss-l)103 • (3)

Using the same values and assumptions as above for the appropriate

parameters, the 613C value of the methane is calculated to be -

43±10 per mil. A similar 13C-enrichment relative to methane

produced via C02-reduction (see below) has been observed in the

laboratory microcosm experiment (1).

Approximately, 20 and 26% of the methane is derived from

acetate in the upper 30 cm of sediment at Cape Lookout in July and

August, respectively, with the remainder formed via C02-reducti0n

(22). Direct measurements of the relative rates of the two

methanogenic processes are not available for other months. The 613C

value of the acetate methyl group in the 8-16 cm interval in June,

1984 was -26 per mil (7), which is a value more similar to that

found in the sulfate reducing sediments than in the underlying

methanogenic zone. That suggests that little of the acetate was

dissimilated to CH 4 and CO 2 (f=0) at that time. On the other hand,

one must consider the possibility that the June value is the

combined result of a synthetic isotope effect, similar to that

associated with acetogenesis (30,48), and a methanogenic isotope

effect. For the purposes of the model, the simpler scenario is
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assumed, i.e. the synthetic isotope effect remains small and

unchanged throughout the summer and f=0 in June. Accordingly, when

f=0, then the proportion of methane produced from acetate relative

to total methane production (F) must be zero. There is no

information concerning F for any other months. For the purposes of

the model F=O for all months except July and August, where it

equals .20 and .26 respectively (Fig. 3b).

C02-Reduction

12CO2 is selectively converted to CH 4, creating an isotopic

gradient in the dissolved inorganic carbon (ZCO 2) pool as buried

sediment encounters and passes through the methanogenic zone (46,

Fig. 4; Table 2). At Cape Lookout Bight, the methanogenic zone

moves along the 613C gradient in response to the seasonal changes

in the depth of sulfate penetration (Fig.4). In addition, the 613C

profiles of ZCO 2 respond to the seasonal changes in organic matter

remineralization rates. Thus, the methanogens are exposed to

different isotopic compositions of CO 2 throughout the year because

of the two phenomena. The temporal CO 2 signal has been estimated by

calculating the isotopic composition of CO 2 in equilibrium with

HCO 3- at the peak of the CO2-reducing zone for each month that ZCO 2

profiles were available (Blair and Boehme, submitted; S.E. Boehme,

Ph.D. thesis, North Carolina State University, Raleigh, in prep.).

The peak of the CO2-reduction zone approximately coincides with the

shallowmost depth where the sulfate concentration is less than
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1.0±0.5mM (21,22). The relative contributions of the CO2, HCO 3- and

CO3" to the ZCO 2 pool were estimated, assuming mutual chemical

equlibrium (53), for the average pore water pH of 6.95 (J.P.

Chanton, Ph.D. thesis, Univ. North Carolina, Chapel Hill; N.E.

Blair, unpublished results). The isotopic composition of the CO2 °

was estimated by solving the following equations simultaneously,

613C(ZC02) = x613C(C02) + y613C(HC03 ") + z613C(CO3 ") (4)

e(HCO3-/CO 2) = [103+6_3C(Hc03 -)]/[lo 3 + 613C(C02)] (S)

_13C(HCO3-) = 613C(C03=), (_)

where x,y,z represent the fractions of each of the dissolved

components. The 613C values of the HCO 3- and C03 = ions are assumed

to be equivalent (equation 6) to simplify the calculations.

Theoretical studies indicate that the HCO 3- ion may be enriched in

13C by 1.4-1.7 per mil for the temperature range involved (23). For

the given pH, the CO3" ion represents less than 1% of the ZCO 2 pool,
4

thus the small isotopic difference is considered insignificant. The

equilibrium fractionation factor is given by

Inu(HC03-/CO 2) =(9.552/T)- 0.0241 (v)

where temperature (T) is in Kelvin (26). The resulting CO 2 613C

values as a function of time are shown in Fig. 3c. The seasonal
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isotopic variations are large and clearly must have a significant

effect on the methane 613C values.

The fractionation factor for CO_-reduction ranges from 1.03 to

1.06 in cultures (3,4,27,29). The evidence for a temperature effect

on the fractionation factor, while expected, is equivocal and may

be dependent on culture conditions. We have attempted to estimate

the in situ fractionation factor using data associated with the two

temperature extremes at this site. At 7.8°C (Feb.), the 613C values

of the CH 4 and CO 2 were -61.7 and -3.6, respectively, using the

equation

(ZCO2 = [613C(C02 ) + 103]/[613C(CH4 ) + 103],
(8)

Uc02 was calculated to be 1.062, during a period of time when it has

been assumed that methane was produced predominantly via CO 2-

reduction. In August (T=26.5°C), the 613C of the methane was -57.7.

Given that 26% of the methane is derived from acetate

dissimilation, and 613C(CH4/Acet) = -43, then the 613C value of the

methane produced via CO2-reduction (6_3C(CH4/CO2) should be

approximately -62.1. Finally, with 613C(CO2)= -9.8, we estimate

Uc02 = 1.056 at 26.5°C. Fitting the two estimates to an Arrhenius

temperature dependence, one obtains

In Uc02 = (25.0/T) -0.029
(9)

where temperature is in Kelvin. The seasonal variation of Uco2 is
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shown in Figure 3d. The isotopic composition of the methane

produced from the CO 2 for the other months was calculated using

613C(CH4/CO2) =[[613C(C02 ) + I03]Ia] - 10 3 (10)

and is shown in Figure 5a.

6Z3c (CH4)

The isotopic composition of the methane produced at A-1 is

described simply by the mass balance relationship,

613C(CH4) = F613C(CH4/Acet) + (I-F) 613C(CH4/CO2). (ii)

The calculated monthly 613C values, using the parameters in Figures

3a-d, are in excellent agreement with measured values for the

period February to September (Fig. 5b). The movement of the

methanogenic zone over the ZCO 2 613C gradient and the temporal

variation of =c02 are responsible for the gradual depletion of 13C

in the methane between February and June. The onset of acetate

dissimilation in July-August coupled with the change in 613C value

of the CO 2 within the methanogenic zone results in a dramatic

enrichment of 13C in those months. The trend is reversed when

acetate dissimilation ceases in late August. The subsequent 13C-
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depletion in October and November is caused by changes in Uco 2 and

the 613C value of the CO2 • The relatively poor fit of the model to

the observed values in October and November may be because the

model estimates instantaneous 613C values and the measured values

represent a pooled product. The largest deviation between modelled

and observed values would be expected at this time when the

reservoir of methane is large and bubbling rates are low.

Implications for Freshwater Sediments

Methane produced in freshwater environments is often enriched

in 13c relative to biogenic gas from marine sediments (59). It has

been hypothesized that this is due to the relatively greater

importance of acetate dissimilation as a methane-producing pathway

in freshwater systems (59). 14C-tracer studies indicate that 50-70%

of methane production is via acetoclastic processes (F=0.5-0.7;

12,37,53,60). Our calculations indicate that the methane derived

from the acetate methyl group is enriched in 13C relative to that

from CO2-reduction, thus apparently confirming the hypothesis. The

13C-enrichment is a consequence of the smaller fractionation factor

and large degree of conversion of the methyl group to methane

(f=0.4, see equation 3). In freshwater sediments, where f=0.7-0.9

(12,37,53;60), the potential 13C-enrichment could be greater if the

synthetic pathways of acetate and the associated isotope effects
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are comparable to those at Cape Lookout. Other investigators, using

culture and modelling results, have proposed that acetate synthesis

in freshwater sediments occurs by a very diTferent process, i.e.

acetogenic C02-reduction (30). Acetate produced in this manner

would be significantly depleted in 13C because the acetogenic

process exhibits a large (u _ 1.06) isotope effect (30,48).

However, 14C-tracer studies indicate that <2% of the acetate in

eutrophic lake sediments is produced by C02-reduction (38). The

results from Part 2 (1) suggest that the ecological niche of the

acetogenic bacteria may be an opportunistic one. Application of the

approach summarized in this report to freshwater systems should

resolve the issue. Such work is currently underway.
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SUMMARY

The isotopic composition of methane varies seasonally at a

variety of sites (15,44). In the organic-rich marine sediments of

Cape Lookout Bight, North Carolina, the carbon isotopic variations

appear to be the result of three factors. During the period

February-June, CO2-reduction is the dominant methanogenic pathway

and the 613C variations are driven by the movement of the

methanogenic zone along an isotopic gradient within the dissolved

CO 2 pool. Changes in the relative rates of C02-reduction and

acetate dissimilation become the dominant factor from July to

September. Throughout the whole time period, a temperature

dependence on the fractionation factor for CO2-reduction may play

a role controlling the methane 613C value.

The Cape Lookout model is the first to combine measured

isotopic compositions of both methanogenic precursors, CO 2 and

acetate, with measured rates of methanogenic processes. The

agreement between model predictions and observed 613C values of

methane verifies estimates of in situ fractionation factors

associated with acetate cycling and methanogenesis. The model also

indicates that methane produced by acetate dissimilation should be

enriched in 13C relative to that produced via CO2-reduction, thus

verifying, in general terms, earlier hypotheses concerning the

isotopic differences commonly observed between methane from

freshwater and marine sediments (59).
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TABLE 1. Carbon isotopic compositions of methane bubbles from

Cape Lookout Bight, North Carolina

613C

Month 19631 19841 19862

February -63.4

April -63.8

May -66.2

June -64.5 -64.1

July -62.2 -60.0

August -59.6 -57.6

September -60.3 -58.0

October -60.0

November -62.2

-60.0

-61.7

-60.8

-58.5

-55.9

-58.0

-58.3

-59.4

I Data from (44).
2 Data from S.E. Boe_me, Ph.D. dissertation, North Carolina State

University, Raleigh, in progress.
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TABLE 2: Carbon isotopic composition (613c) of porewater ZCO 2 from

Cape Lookout Bight, North Carolina.

2120186 711186
co c

bottom water 0.7

0-i -2.6 -10.4

1-2 -I.0 0.4 -11.6

2-3 -I.0 1.2 -12.0

3-4 -i.0 -11.8

4-5 -1.9 -11.5

5-6 -2.7 -11.1

6-7 -2.2 -2.9
-3.5 -9.7

7-8 -3.2
8-9 -7 5
9-10 -1.6 -2.4 •

10-12
11-12 0.0

-2.2

12-14 -0.5 -1.9

16-18 1.4
20-22

24-25 4.6 3.8

24-26 5.1
28-30

29-31 6.6

32-34 6.7

35-36 8.1

36-38 8.0

37-39 7.8

-9.4

-10.3

-11.2

-9.5

-9.6

2.8

7.0
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Figure 1: Cape Lookout Bight, North Carolina. The sampling

station i_ designated A-1.

Figure 2: The 613C values of acetate and its methyl group as a
function of depth. The 613C values are averages of

results from 8/86 and 7/87 (5}. The fraction of the

methyl group which is converted to methane (f) as a

function of depth (22,51).

Figure 3: Model parameters as a function of time.

3a: Average monthly temperature at Cape Lookout (40,41,44

this study).

3b: The fraction of methane derived from the dissimilation

of acetate (F).

3c: The 613C value of dissolved CO 2 in the methanogenic

zone.

3d: The fractionation factor (a) for C02-reduction.

Figure 4: The 613C values of ZCO 2 as a function of depth within
the sediment from Cape Lookout. Profiles from February

and July, 1986 are shown. The dotted horizontal lines

represent the depths at which dissolved sulfate

concentrations are equal to or less than 1.0±0.5 mM in

February and July.

Figure 5: The measured and calculated 613C values of methane from

Cape Lookout.

5a: Calculated 613C values of methane produced from CO 2-

reduction.

5b: The monthly average measured 613C values of methane
bubbles for the period 1983-1984 and 1986 (e). The

calculated 613C values using the model described in the

text (----).
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Abstract--The 6 _3C value of porewater acetate isolated from the anoxic sediments of Cape Lookout
Bight, North Carolina, ranged from -17.6%0 in the sulfate reduction zone to -2.8%0 in the underlying
methanogenic zone. The large _3C-enrichment in the sulfate-depleted sediments appears to be associated

with the dissimilation of acetate to CH4 and COx. Fractionation factors for that process were estimated
to be 1.032 + 0.014 and 1.036 _+ 0.019 for the methyl and carboxyl groups. A subsurface maximum in

6 _3C of the total acetate molecule, as well as the methyl and carboxyl carbons at 10-15 cm depth within

the sediment column indicates that changes in the relative rates of acetate cycling pathways occur in the
methanogenic zone. The methyl group of the acetate was depleted in '_C by 7-14%0 relative to the

carboxyl moiety. The intramolecular heterogeneity may be the result of both synthetic and catabolic
isotope effects.

INTRODUCTION

ACETATE IS A KEY INTERMEDIATE in the early diagenesis of

organic matter. Acetate can be produced by anaerobic bacteria

via the degradation of a wide variety of organic compounds,

including amino acids (BARKER, 1981 ; STAMS and HANSEN,

1984 ), carbohydrates ( WINTER and WOLFE, 1980; BHARATI

et al., 1980; LAUBE and MARTIN, 1981; LJUNGDAHL and

WOOD, 1982; JONES et al., 1984; and many others), and

organic acids and alcohols (BRYANT el al., 1977; M(iNERNEY

et al., 1979; MCINERNEY and BRYANT, [981; KOCH et al.,

1983; EICHLER and SCHINK, 1984; STIEB and SCItINK, 1985,

1986; KREMER et al., 1988). Bacteria capable of producing

acetate via CO2-reduction with H2 have also been identified

(BRAUN et al., 1979, 1981; LEIGH et al., 1981; LJUNGDAHL

and WOOD, 1982). The dominant microbial populations re-

sponsible for acetate synthesis and the relative importance

of the different synthetic pathways in marine sediments are

poorly understood.

Acetate is rapidly consumed in sediments by microorgan-

isms linked with terminal oxidative processes such as sulfate

reduction and methanogenesis. Sulfate-reducing bacteria ap-

pear to be responsible for the oxidation of>95% of the acetate

in organic-rich marine sediments (WINFREY and WARD,

1983; SHAW et al., 1984). In sulfate-depleted marine and

freshwater sediments, acetate is disproportionated to CH4

and CO2 (WARFORD et al., 1979; WINFREY and ZEIKUS,

1979a; SANSONE and MARTENS, 1981, 1982; LOVLEY and

KLUG, 1982; GRILL and MARTENS, 1986; SCHUTZ et al., 1989;

KUIVILA et al., 1990). Approximately 25-50% of the methane

production in organic-rich marine sediments and as much

as 60-70% in freshwater sediments results from the dissimi-

lation of acetate (CAPPENBERG and PRINS, 1974; WINFREY

and ZEtKUS, 1979a; LOVLEY and KLUG, 1982; CRILL and

MARTENS, 1986; KUIVlLA et al., 1990). The dissimilation

process occurs only in the sulfate-depleted portion of the sed-

* Present address. Archer Daniels Midland Co., PO Box 10640,
Southport, NC 28461, USA.

1247

iment column because of the competition for acetate between

the methanogens and sulfate reducers (SCHONHEIT et a].,

1982; LOVLEY and KLUG, 1983a).

In addition to the methanogenic archaebacteria, other mi-

croorganisms may be involved in the catabolism of acetate

in sulfate-depleted sediments. Van Niel proposed the meth-

ane-producing pathway:

CH3COOH + 2H,,O "_ 2CO2 + 4H, -'_

C02 -{- CH4 q- 2H20 ( 1)

as an alternative process to the direct dissimilation of acetate

to methane and CO2 ( BARKER, 1936). An organism capable

of the first step of the reaction, the production of CO, and

H2 from acetate, has been isolated from a methane-producing

thermophilic digester (ZINDER and KOCH, 1984). The mi-

croorganism, nicknamed "Reversibacterium," exists in a

syntrophic relationship with hydrogen-utilizing methanogens.
'4C-tracer studies have indicated that acetate oxidation to

CO2 is an important process in sulfate-depleted marine sed-

iments (WARFORD et al., 1979; SANSONE and MARTENS,

1981, 1982; CreEL and MARTENS, 1986). It has been pro-

posed that an interspecies H,,-transfer consortium between a

sulfate reducer and a methanogen may be responsible for

pathway ( 1) in marine sediments (SANSONE and MARTENS,

1982). Alternatively, the acetate oxidation may be mediated

by a sulfur-reducing bacterium (WAREORD et al., 1979:

WINFREY and ZEIKUS, 1979b) similar to the freshwater De-

sulJuromonas acetoxidans (GEBHARDT et al., 1985).

Isotope effects which might be associated with acetate cy-

cling would have a significant, if not dominant, influence on

the isotopic composition of the diagenetic products, XCO2

and CH4 (LAZERTE, 1981; WHITICAR et al., 1986). For in-

stance, differences in the 6L_C and 6D values of methane

from marine and freshwater environments have been attrib-

uted to differences in the relative importance of the acetate

dissimilation and CO2-reduction pathways (WHITICAR et al.,

1986). Similarly, seasonal variations in the isotopic com-

position of methane from anoxic sediments have been hy-
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pothesized to result from changes in acetate cycling processes

(MARTENS et al., 1986; BURKE et al., 1988; CHANTON and

MARTENS, 1988). Our ability to test those hypotheses, and

more generally the development of quantitative models which

describe the biogeochemical controls of the carbon isotopic

compositions of _CO2 and CH4, have been limited by the

lack of information concerning the isotopic systematics of

acetate turnover (GAMES and HAYES, 1976; LAZERTE, 1981 ).

In an attempt to address some of the issues in question

concerning acetate cycling pathways and the associated iso-

topic fractionations, we have made /t_3C measurements of

acetate and its methyl group isolated from the anoxic marine

sediments of Cape Lookout Bight, North Carolina. Prelim-

inary measurements suggested that large carbon isotope effects

accompany the natural turnover of acetate (BLAIR et al.,

1987). The measurements presented in this report provide

new information concerning the relative rates and spatial

distribution of acetate cycling processes, and the carbon iso-

tope fractionation which occurs during the turnover of

acetate.

FIELD SITE

Cape Lookout Bight, North Carolina, is a 1-2 km _ coastal

basin located 115 km SW of Cape Hatteras on the Outer

Banks ( MARTENS and KLUMP, 1980; MARTENS et al., 1980).

Fine-grained sediment with an organic content up to 4% dry

weight (MARTENS and KLUMP, 1984), accumulates at a rate

of 8-12 cm/yr (CHANTON et ai., 1983; CANUEL et al., 1990)

at the sampling station, A-1. The organic matter appears to

be derived from phytoplankton and seagrass debris ( HADDAD

and MARTENS, 1987).

The rapid flux of metabolizable organic matter to the

seabed results in a high rate of organic carbon remineraliza-

tion (MARTENS and KLUMP, 1984). Sulfate reduction, oc-

curring in the upper 10 cm of sediment during summer

months, and methanogenesis, which occurs in the underlying

zone (CRILL and MARTENS, 1983), are the dominant dia-

genetic processes at this site and, respectively, account for 68

+ 20% and 32 _ 16% of the organic carbon remineralization

( MARTENS and KLUMP, 1984). Acetate concentrations over

100 uM have been found in the summer months at the in-

terface between the sulfate-reducing and methane-producing

zones (SANSONE and MARTENS, 1982). Approximately 20-

30% of the methane is produced via acetate dissimilation

(CRILL and MARTENS, 1986).

METHODS

Diver-collected cores were obtained at A-I with 9.5 cm diameter

lucite tubes. Normally, the acetate cores were processed immediately
after collection onboard ship. The porewater from cores collected on
August 14, 1986, was isolated with a sediment press (REEBURGH,

1967 ). The porewater samples were frozen immediately after collec-
tion and stored at -86°C until analysis. One core from that date was
transported to and processed at the Institute of Marine Sciences
(Morehead City) in the same manner. Because of our concern for
potential artifacts associated with the use of the sediment press and
the possibility that the isotopic signature of the acetate may change
rapidly after core recovery, samples collected on July 21, 1987, were
treated in one of two methods. Each sampling interval was split with

one portion immediately centrifuged at 8000 rpm for 10 min. The
porewater sample (40 mL) was passed through a Whatman GFA
filter, acidified with 5 mL of HPLC grade 85% H3PO4 (J. T. Baker)

and frozen in polypropylene bottles (Nalgene). The second portion
of each sediment interval was rapidly mixed with 50 mL of a 1:1
methanol-H20 mixture and frozen. The cores were sampled in less
than 15 rain. after retrieval. The methanol-porewater mixture was
isolated later in the laboratory by centrifugation as described above.

The isotopic analysis of porewater acetate followed a modified
procedure of BLAIR et al. ( 1985, 1987). The porewater sample was
acidified to pH 1 with concentrated H3PO4 and distilled in vacuo
cryogenically to produce a volatile acid fraction. The basified (pH
> I 1) distillate was dried in a Teflon_ beaker under N2 at 135°C.
The dried salts were dissolved in 1.0 mL water and 0.9 mL concen-
trated H3PO4. The resulting mixture was distilled in vacuo cryogen-
ically. The distilling pot was maintained at 90-95°C. The resulting
solids in the pot were redissolved with 1.0 mL of water and distilled
as above. This procedure was repeated a third time with 2.0 mL of
water. The volatile acids were concentrated approximately 25-fold
with this method.

The volatile acids were separated on a 10 um RP-8 Lichrosorb
column (25 cm × 4.6 mm i.d., Alltech Assoc.) and detected at 210
nm (Lambda-Max Model 481, Waters Chromatog. Div.). The mobile
phase was 0.01 M H2SO4 maintained at 0.63 mL/min. The acetate
was separated from the H2SO4 and concentrated by the following
drying/distillation steps. The acetate fraction collected from the liquid
chromatograph was brought to pH 11 with 20% NaOH and dried,
as described above. The salts were dissolved in 50 pL water and 200

uk H3PO4, and the resulting solution was distilled as above. The
distillate was stored frozen until needed.

The isolated acetate was converted to CO2 for isotopic analysis
with a gas chromatograph-combustion system (MATTHEWS and
HAYES, 1978; DES MARAIS, 1978). The Carlo Erba HRGC 5300
Mega series was outfitted with a packed column injector (150°C)
and a Superox-FA wide bore capillary column (0.53 mm o.d., 30 m
length, AIItech Assoc.). The helium flowrate was 3 mL/min and the
temperature was programmed to hold at 80°C for 15 rain. and ramped
to 110°C at 10°/min. The sample was swept through the combustion
furnace (2 mm i.d. quartz tube packed with 80-100 mesh CuO, 780-
790°C) with a make-up gas ( 12 mL/min He). The resulting CO2
was monitored with a thermal conductivity detector (Gow-Mac Model
40-400) and collected in a Vs in. stainless steel multiple loop trap
immersed in liquid nitrogen. The CO2 was then purified cryogenically
and stored in a 6 mm o.d. Pyrex breakseal until isotopic analysis.
Acetate standards producing >0.3 #moles CO2 per 10 #L injection
were found to have _13C values within 0.4%_ of the accepted values,
which were determined by either bomb combustion (BLAIR et al.,
1985 ) or direct gas chromotograph (GC) combustion oflarge samples.
This sample size would typically translate into an original porewater
concentration of >30 uM. Smaller standards were depleted in _3C

by more than 0.5%0. Accordingly, all 6 _3C analyses reported in this
paper were from samples > 0.3 pmoles C/injection. The sensitivity
of this procedure is comparable to that reported for an alternative
method (GELWICKS and HAYES, 1990).

The isotopic analysis of the acetate methyl group was accomplished
by the pyrolysis of sodium acetate (OAKWOOD and MILLER, 1950;
MEINSCHEIN et al., 1974; BLAIR et al., 1985). A 200:1 mixture of
NaOH and acetate ( from the last distillation ) was dried under N2 at
135°C in a quartz tube (9 mm i.d. × 20 cm long). The tube was

evacuated after drying and heated to 500°C. Methane, which is de-
rived from the methyl group, was quantitatively collected, measured,

and injected into the GC combustion system via Toepler pump. The
purification of the methane was accomplished on a 2.5 m long × 2
mm i.d. stainless steel column packed with 100-150 mesh Porasil B
(AIItech Assoc.) at room temperature. The CO2 resulting from the
combustion of the methane was treated as above for isotopic analysis.
As little as 1.6 umoles of acetate could be analyzed with an accuracy
and precision of 0.3%o.

Samples for the t5_3C measurements of the total organic carbon
(TO(?) fraction were prepared by one of two methods. Samples from
1983 were prepared by a bomb combustion method described pre-
viously (BLAIR et al., 1987). Samples from 1986-87 were treated
with a modified procedure. Between 0.7 and 1.0 grams of wet sediment
were slurried with IN HCI until bubbling ceased, after which the
sample was lypholized. Approximately 20-30 mg of the homogenized
sample were combusted in tin boats with a Carlo Erba 1500 CNS
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analyzer(UNC-ChapelHill,MarineSciences).TheresultingCO2
was collected in a Vsin. stainless steel multiple looped trap immersed
in liquid nitrogen. The CO2 was subsequently transferred cryogenically
and sealed in a 6 mm o.d. Pyrex tube for later isotopic analysis. The

t3C values of standards prepared by the CNS analyzer were within

0.3%0 of those prepared by the bomb combustion method referenced
above.

Lipid fractions were prepared for isotopic analysis by sonicating
150 mg of freeze-dried sediment with 5 mL of 1: 1 methanol-toluene
(Burdick and Jackson) for 10 min. The mixture was vortexed for 2
rain. The extract-sediment mixture was separated by centrifugation,
and the sediment was reextracted as above. The extracts were com-
bined, and the solvent was removed by rotary evaporation. The sample
was saponified with a 1:1 aqueous 1 M KOH-methanol solution
(J. T. Baker, Burdick and Jackson ) at 77°C for 2 h. The KOH pellets
had been pretreated by heating at 490°C for 25 min to remove organic
contamination. The saponified lipid mixture was extracted three times

with previously distilled petroleum ether (40-45°C) to produce the
neutral lipid fraction. The KOH mixture was then acidified and reex-
tracted with previously distilled CHC13 to produce the fatty acid frac-
tion. The volumes of both fractions were reduced by rotary evapo-
ration. The samples were transferred to Ag boats with CHCI3, and
the solvent was removed in vacuo. The samples were converted to

CO2 for fi_3C analysis by bomb combustion (BLAIR et al., 1985).
The b t3C measurements of the CO2 from the various preparations

were analyzed on either a modified Nuclide 6-60 RMS ( NASA-Ames
Research Center) or one of two Finnigan MAT 251 mass spectrom-
eters ( NCSU Stable Isotope Laboratory and the University of Georgia
Center for Applied Isotope Studies). A cross-calibration of a COs
standard by the three facilities produced results consistent to within
0.25°/'00. Procedural blanks were collected and used to correct the

results of all analyses.
Dissolved sulfate was measured on 5 mL of porewater by the gravi-

metric analysis of the precipitated barium salt (CHANTON, 1985:
CHANTON et al., 1987). Sulfide was removed immediately after the

recovery of the porewater sample by the addition of ZnCI,,, followed
by the filtration of the zinc sulfide precipitate. The accuracy of this
procedure is typically _+0.5 mM (CHANTON, 1985 ).

RESULTS

The 6t3C values of the TOC from Cape Lookout Bight

averaged - 19.08 +--0.26%0 ( Fig. 1), indicating that the organic

matter is predominantly of marine origin (HAINES, 1976;

GEARING et al., 1984; HADDAD and MARTENS, 1987). The

fatty acid and neutral lipid fractions averaged -22.1 + .5

and -22.9 + .3%0, respectively (Fig. 1). Similar _3C-depletions

relative to the TOC have been observed in lipid fractions

isolated from estuarine sediments (PARKER, 1964), the

Eocene Messel shale (HAYES et al., 1987), and a wide vari-

ety of biological samples (ABELSON and HOERING, 1961;

PARKER, 1964; DEGENS et al., 1968; DENIRO and EPSTEIN,

1977: MONSON and HAYES, 1982a,b). The nearly ubiquitous

_3C-depletion of lipids has been attributed to isotope effects

associated with the biosynthesis and cycling of the lipid pre-

cursor, acetyl CoA (DENIRO and EPSTEIN, 1977; MONSON

and HAYES, 1982a,b; BLAIR et al., 1985).

Porewater sulfate and acetate concentrations ( Fig. 2 ) were

similar to those observed previously at this site (SANSONE

and MARTENS, 1982; CHANTON, 1985; CRILL and MARTENS,

1987). A subsurface maximum in acetate concentration fre-

quently occurs between June and August at the same depth
horizon where dissolved sulfate concentrations fall below 1

mM (SANSONE and MARTENS, 1982 ). The magnitude ofthe

subsurface maximum was highly variable, similar to that seen

in other studies at this site using different sediment processing

and analytical methods (M. Alperin, per. comm.). The vari-
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FIG. 1. b _3Cvalues oftotal organic carbon and lipid fractions. The
TOC samples were collected on July 7, 1983 (©), August 14, 1986
([3), and July 21, 1987 (<1). The fatty acid (O) and neutral lipid
fractions (11) were from July 7, 1983. The TOC data is from Blair et
al. (1987), Boehme et al. (unpubl. data), and this study.

ability between cores is thought to result from spatial het-

erogeneities in acetate cycling processes. No systematic dif-

ferences were observed between splits of cores, which were

processed by either the immediate centrifugation or metha-

nol-poisoned/centrifugation treatments (Fig. 2C).
The 6'3C values of the porewater acetate exhibit excursions

of nearly 15%0 with a pronounced subsurface maximum at

the base of the sulfate reduction zone (Table t, Fig. 3). The

downcore variation is similar to that observed previously

(BLAIR et al., 1987), but the absolute values are 5-10%o

heavier than the earlier data. The differences may represent

true temporal variations as the 1983-84 data set was from

June to early July. However, it should be noted that the core

handling procedures were different in the two studies. In the

original investigation, all cores were returned to the laboratory

and refrigerated at 4°C until they could be processed ( BI,AIR

et al., 1987). One core was treated similarly in this study.

The results from that core (one total and two methyl t3_3C

values) were approximately I%0 lighter than those from a

core processed immediately after collection onboard ship.

Though the size of the data set prevents a rigorous statistical

evaluation of the differences, it appears that the sample pro-

cessing procedures were not responsible for the large differ-

ences between the two studies. Investigations are under way

to resolve this issue.
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The isotopic variability between cores from the same sam-

pling date (0.2-2%o) was also of concern. No systematic dif-

ferences were observed between the results of the different

sampling procedures; thus, we conclude the noise is due to

spatial heterogeneities on the meter scale within the seabed.

Accordingly, the results from all treatments on a sampling

date were averaged (Table 1; Fig. 3).

The 6 _3C values of the acetate methyl group are 2-7%0

lighter than the total molecule (Table 1 ). The depth profile

parallels that of the total acetate (Fig. 3 ). The 6_C values of

the carboxyl group were determined by a mass balance cal-

culation and are 5-14%o enriched in _3C relative to the methyl
group.

DISCUSSION

In principle, the isotopic composition of sedimentary ac-

etate should be controlled by the ( 1 ) isotopic composition

of its precursors, (2) isotopic fractionations associated with

its synthesis and consumption, and (3) relative rates of all

Table i: 613C values of pore water acetate.

8114186

Depth (cm) CH3COO H CH 3 _ _COOH 4

0-5 -17.61 _21.4(0.7)2 41

5-10 -11"4(1"0) 2 -18.6(0.4) 2 -14.

10-15 -4.6(0.2)2 _10.5(0.4)2 -4"2(2"4)2
1.2(0.1) 2

15-20 -11.0(0.8)2 _13.6(0.8)2 _8.4(0.8)2

7121/87

Depth (cm) CH3COOH CH 3_ _COOH 4

0-5

5-10 -12.01 -24"9(0"8)2
-18 5(0.2) 2 -5.3 _

10-15 -2.8(1.6)3 _8.3(0.3)2 4.4(1.2) 2

15-20 -7.2(2.1)2 _14.4(0.5)2 0.0(3.7) 2

i Single measurement (n=l)

2 Difference between duplicate core 613C values and the mean.

3 Standard deviation (la) for mean of triplicate core values.
4 Determined by mass balance calculation.
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processes which influence its pool size (BLAIR et al., 1985;

BLAIR et al., 1987; GELW1CKS et al., 1989). The downcore

variations in the 6 _3C value of acetate from Cape Lookout

Bight indicate that changes in one or more of those factors

occur as a function of depth within the sediment column.

Each of those factors is discussed below.

Carbon Sources

The metabolizable organic carbon, which is the ultimate

source of the acetate carbon, is estimated to have approxi-

mately the same average 613C value as the TO(? fraction

(- 19.08 + .26) because the 6 _3C value of the TOC remains

unchanged as a function of depth (Fig. 1), even though 20-

30% of the carbon is remineralized (MARTENS and KLUMP,

1984). The 6 t3C value reflects a mixture of isotopically dis-

tinct sources. The sedimentary organic matter, and by infer-

ence, the metabolizable fraction, are derived from a variety

of sources including phytoplanktic, microbial, and vascular

plant remains (HADDAD and MARTENS, 1987; MARTENS et

al., 1992). Visual inspection of cores and lignin analyses

have indicated that Haladule wrightii and Zostera marina,

the predominant seagrasses in the area (THAYER et al., 1978),

and Spartina alterniflora are sources of the vascular plant

matter (HADDAD and MARTENS, 1987). These plants typi-

cally have 6 '3C values of-6 to - 13%0 (THAYER et al., 1978;

MCMILLAN and SMITH, 1982; STEPHENSON et al., 1984; FRY

and SHERR, 1984). This is in contrast to the t5_3C values of

coastal plankton, which can range from -20 to -23%0

(HAINES, 1976; GEARING et al., 1984). The relative contri-

butions of the vascular and nonvascular plant sources to the

buried organic carbon pool have been estimated to be 17

_+ 23% and 83 + 47%, respectively (HADDAD and MARTENS,

1987). The relative importance of those sources to the me-

tabolizable fraction is unknown. While variations in the rel-

ative abundance of those sources within the sediment column

could influence the 6 J3C depth profile of the acetate, no ev-

idence for significant variations is apparent in either the TOC

6_3C (Fig. 1) or lignin profiles (HADDAD and MARTENS,
1987).

Isotopic heterogeneities which result from differences be-

tween compound classes also exist in the metabolizable frac-

tion. Identified amino acid, carbohydrate, and lipid carbon

represents 64 + 17% of the metabolizable pool (BURDIGE

and MARTENS, 1988, 1990; HADDAD, 1989; HADDAD and

MARTENS, 1990; MARTENS et al., 1992). Lipid fractions are

depleted in '3C relative to the TOC fraction (Fig. 1). The

t3_3C values of the amino acid and carbohydrate fractions are

unknown. Large inter- and intramolecular carbon isotope

heterogeneities exist in amino acids produced in a variety of

algal and microbial cultures (ABELSON and HOERING, 1961 ;

BLAIR et al., 1985; MACKO et al., 1987 ), and similar patterns

may exist in sediments. The isotopic composition of carbo-

hydrates from different sources is poorly characterized but

the bulk carbohydrate pool is typically thought to be similar

to that of the total biomass fraction of an organism ( DEGENS

et al., 1968; BLAIR et al., 1985). However, 3-4%o differences

have been observed between different carbohydrate fractions

from marine plankton (DEGENS et al., 1968 ), and the leaves

from the CAM-plant Bryophyllum daigrmontianum (DE-

LEENS and GARNIER-DARDART, 1977). The importance of

the isotopic heterogeneity within the metabolizable carbon

pool is dependent on the extent to which specific organic

fractions bypass acetate as an intermediate during diagenesis.

Synthetic Isotope Effects

Little is known about the isotope effects associated with

the anaerobic biosynthesis of acetate; however, any synthetic

pathway could create a unique isotopic signature in the acetate

that it produces. For example, the 6 J3C values of the methyl

and carboxyl groups of acetate produced aerobically from
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glucose by Escherichia coli were approximately 0 and +26%O

relative to the glucose (BEam et al., 1985). The large en-

richment of _3C in the carboxyl group was proposed to result

from the transformation of acetyl phosphate to acetyl-CoA.

Acetobacter suboxydan expressed a smaller fractionation

during the aerobic synthesis of acetate from ethanol where

the methyl and carboxyl groups were -9 and 0%O relative to

the corresponding ethanol carbons (RINALD1 et al., 1974).

The COz-reducing anaerobe, Acetobacter woodii, produced

acetate which was isotopically homogeneous yet depleted in

13C by as much as 57%o relative to the total carbonate fraction

(GELWICKS et al., 1989; PREUI3 et al., 1989). The isotope

effect was believed to be associated with the enzyme carbon

monoxide dehydrogenase (GELWlCKS et al., 1989). The de-

carboxylation of lactate by the sulfate reducer, Desulfovibrio

desulfuricans, produced CO2 depleted in _3C by 5-13%o rel-

ative to the lactate carboxyl group (KAPLAN and RITTEN-

BERG, 1964). The isotopic composition of the acetate which

was produced was not measured; however, the carboxyl group

of the acetate could be depleted in _3C if the fractionation

occurred during the actual decarboxylation step. A summary

of the culture studies is shown in Fig. 4.

Catabolic Processes and Isotope Effects

The potential for isotope effects during the consumption

of acetate is equally significant. Several biochemical strategies

are used by sulfate- and sulfur-reducing bacteria to oxidize

acetate to CO2 (THAUER et al., 1989). Desulfobacter postgatei

activates acetate to acetyl CoA via the reaction:

Succinyl CoA + acetate --_ Succinate + acetyl CoA (2)

The acetyl CoA is subsequently oxidized to COz via the citric

acid cycle (BRANDIS-HEEP et al., 1983; GEBHARDT et al.,

1983). Desulfuromonas acetoxidans, an anaerobe which

grows on acetate and sulfur, utilizes similar pathways (GEB-

HARDT et al., 1985; THAUER et al., 1989). In contrast, De-

sulfotomaculum acetoxidans and Desulfi)bacterium autotro-

phicum activate acetate to acetyl CoA by the intermediate

formation of acetyl phosphate. The acetyl CoA is oxidized

to CO2 via the carbon monoxide dehydrogenase pathway

(SCHAUDER et al., 1986, 1989; SPORMANN and THAUER,

1988, 1989). To our knowledge, the carbon isotopic frac-

tionation associated with the oxidation of acetate by either

of those pathways has not been reported.

The methanogenic genera, Methanosarcina and Methan-

othrix, are the only known microorganisms capable of dis-

similating acetate to CH4 and CO: (THAUER et al., 1989).

In both genera, acetate is converted to acetyl CoA, after which

the carbon-carbon bond of the acetyl unit is cleaved (GRA-

HAME and STADTMAN, 1987; THAUER et al., 1989). The

methyl group is reduced to methane, and the carbonyl group

is oxidized to CO: (BUSWELL and SOLLO, 1948; STADTMAN

and BARKER, 1949; ZEIKUS, 1983). The fractionation factor

(k _:/ k _3) for methane formation from acetate by Methan-

osarcina barkerii is 1.02-1.03 (RISATTI and HAVES, 1983;

KRZYCKI et al., 1987 ). The fractionation factors for acetate

dissimilation by other species, including the marine meth-

anogen, Methanosarcina acetivorans (SOWERS et al., 1984),

have not been reported.

Relative Rates of Acetate Cycling Processes

The relative rates of the acetate cycling processes will have

a major influence on the isotopic composition of that com-

pound if any of the processes exhibit a significant isotope

effect. The results of 14C-tracer experiments can be used to

estimate the relative rates of two processes, the oxidative and

dissimilative pathways, by comparing the rates of conversion

of the acetate methyl group to CO2 or CH4. The fraction of

the acetate methyl group, which is converted to methane

(f), is defined by the equation:

f= rcH,/(rcH, + rco2), (3)

where rcn, and rc-o2 are the rates of the conversion of the

acetate methyl group to CH4 and CO:, respectively. By in-

ference, frepresents the fraction of acetate that is dissimilated

directly by methanogens. If uniformly _4C-labelled acetate is

used to estimate turnover rate constants, fcan be determined

with the relationship:

f= 2kcH, + kco2), (4)

where ken, and kco_ are the rate constants for CH4 and CO2

production from the total acetate molecule. It is assumed

that the methane is derived solely from the methyl group.

Similarly, the respiration index measurement (SANSONE and

MARTENS, 1982) can be related to fby:

.f= 2(1 - RI), (5)

where the respiration index (RI) was determined with U-

_4C-labelled acetate and is defined as:
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RI = 14CO 2 Production/( 14CO2 Production

-F 14CH4 Production). (6)

Data from SANSONE and MARTENS (1982) and CRILL and

MARTENS (1986) were used to estimate ffor Cape Lookout

Bight (Fig. 5). The value of fincreases from zero in the

sulfate reduction zone to a maximum of 0.55 in the meth-

anogenic zone. In comparison, 70-86% of acetate (f= 0.70-

0.86) in freshwater sediments is dissimilated directly to CH4

and CO2 (CAPPENBERG and PRINS, 1974; WINFREY and ZE]-

KUS, 1979a; LOVLEY and KLUG, 1982). The fact that fis

significantly less than 1.0 indicates that an oxidative process

competes with the methanogenic dissimilation of acetate. The

similarity in the downcore profiles of fand the acetate 6 _-_C

values suggests that the relative rates of the oxidative and

dissimilative processes may be important isotopic controls.

This point will be tested with a model which is described in

the next section.

The absolute rate constants for acetate turnover, which

were reported in the two studies, differ by an order of mag-

nitude or more (SANSONE and MARTENS, 1982; CRILL and

MARTENS, 1986). This discrepancy has been attributed to a

difference in the incubation times used in the tracer experi-

ments (CRIEE and MARTENS, 1986). The consistency of f

calculated from the two data sets argues that the relative rates

of the acetate cycling processes were insensitive to the dif-

ferences in methodology.

An Isotopic Model for Porewater Acetate

A simple model is proposed to describe the isotopic com-

position of acetate in this system. The following equation can

be used to describe the isotopic composition of the methyl
group, 6me :

6me = (t_syn + 103)(adi_f+ aox[l --f]) -- 103, (7)

where 6,, is the isotopic composition of the biosynthesized

methyl group before consumption, ad,ss is the fractionation

factor associated with the reduction of the methyl carbon to

methane, and o_o_is the fractionation factor associated with

the oxidation of the methyl group (BLAIR et al., 1985).

Steady-state or near-steady-state conditions for the short time

frame needed to turn over the acetate pool ( 15 min to one

day, SANSONE and MARTENS, 1982; CRILL and MARTENS,

1986) and first-order kinetics for the uptake of acetate are

assumed. The model is simplified by setting ao_ = 1.00. This

is a reasonable first approximation because the t5_3C value of

the total acetate molecule in the 0-5 cm interval (f= 0) is

within 1.5%0 of that estimated for the metabolizable organic

carbon fraction. Accordingly, Osyn= -23.2 _+ 2.2%0, which is

the average 6m_ value for the 0-5 cm interval. Average values

of fand 6r, e for the 10-20 cm depth interval, 0.38 + 0.11

and -11.2 + 3.0, respectively, were used with the following
rearranged expression,

O_dis_= 1 + (6me -- 6syn)/[f(6s_n + 103)], (8)

to estimate ad_,. The resulting estimate for ad_,,, 1.032

--+0.014, is in good agreement with that observed in aceto-

clastic cultures (RISATTI and HAYES, 1983: KRZYCKI et al.,

1987). An analogous calculation can be done to determine

the apparent fractionation factor on the carboxyl group as-

sociated with the uptake by methanogens. In that case,

eai_(carboxyl) was found to be 1.036 + 0.019. The agreement

between the estimate of ad_s_from the model and the culture

measurements suggests that the rate of the acetoclastic re-

action relative to acetate oxidation and the isotopic fraction-

ation associated with methanogenesis are the dominant con-

trois of the downcore variations in 6me. Source effects and

the presence of other sinks of acetate, such as biologically

unavailable dissolved and adsorbed pools (CHRISTENSEN and

BLACKBURN, 1982; SHAW et al., 1984; PARKES et al., 1984;

NOVELLI et al., 1988; GIBSON et al., 1989: MICHELSON et al.,

1989), would appear to be limited to secondary roles as con-

trolling factors of the isotopic composition of the methyl
group.

The 4-6%0 _3C-depletion of the acetate downcore within

the 10-20 cm interval indicates that the methanogenic zone

cannot be considered spatially homogeneous in terms of mi-

crobial processes and may be composed of smaller diagenetic

horizons. There is insufficient information to resolve with

confidence if the isotopic shift is due to a source or con-

sumptive effect. However, the _4C-tracer studies of CRILL and

MARTENS (1986) suggest that the relative rates of acetate

oxidation and dissimilation change within the methanogenic

zone with the oxidative process becoming progressively more

important below the depth of peak methane production. Ac-

cording to our model, such a trend would result in the

observed isotopic change.

The isotope model can be used to estimate the 6 _3C value

of methane produced by acetate dissimilation. Assuming

steady-state conditions ( HAYES, 1983 ), the 6 _3C of the meth-

ane is approximated by:

6(CH4/Acet) = _y, - ( 1 - J')(ad,_s - 1 )* 10 3. (9)
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Using the average value of ffor the 10-20 cm methanogenic

zone, tS(CH4/Acet) was calculated to be -43 +_ 10%0. Ap-

proximately 26% of the methane production at this site is

provided by acetate; the remainder is generated principally

by CO2-reduction (CRILL and MARTENS, 1986). A mass bal-

ance calculation using the average measured 61sC value of

-59.5 + 2.0%o for methane produced in July and August at

A-I (MARTENS et al., 1986) indicates that the isotopic sig-

nature of the methane produced by CO2-reduction should

be -65 --- 5%o. This result appears to verify the hypothesis

that the acetate-dissimilating pathway produces methane

which is enriched in s3C relative to that generated by CO2-

reduction (WHITICAR et al., 1986). WHITICAR et al. (1986)

hypothesized further that the isotopic differences observed

between methane generated in freshwater and marine envi-

ronments are the result of the distinctive isotopic signatures

and the relative importance of the two pathways. Accordingly,

freshwater environments, in which acetate dissimilation is

the dominant pathway, typically produce methane which is

relatively enriched in _3C.

Similarly, the seasonal variations in methane 6 J3C and bD

values at Cape Lookout have been attributed, in part, to

changes in the relative rates of the two methanogenic pro-

cesses (MARTENS et al., 1986; BURKE et al., 1988). 14C-tracer

studies have suggested that the proportion of total methane

production from acetate increased from 20% in mid-July 1983

to 29% in late August (CRILL and MARTENS, 1986). The

statistical significance of the temporal trend cannot be eval-

uated; however, the apparent trend toward the greater im-

portance of the acetate dissimilatory pathway in late summer

should produce methane enriched in _3C. The observed

methane 6 _3C values for mid-July and late August are -61.4

___1.1 and -57.7 ___.3%o, respectively (MARTENS et al., 1986).

This consistency between the model predictions and actual

observations not only provides us with some measure of con-

fidence in the general features of the model but also in the

relative rates determined with the _4C-tracer experiments. This

is an important issue given the current controversial nature
of acetate turnover rate measurements (CHR1STENSEN and

BLACKBURN, 1982; SHAW et al., 1984; PARKES et al., 1984;

NOVELLI et al., 1988; MICHELSON et al., 1989; GIBSON et al.,

1989).

Speculations on Microbial Processes in Anoxic Sediments

The calculated 6 _sC values of the carboxyl group exhibit

a downcore trend nearly parallel to that of the methyl group

(Fig. 3 ) suggesting that they are controlled, in part, by meth-
anogenic activity. Two methanogenic-related processes may
influence the carboxyl 613C value. The first involves the bond

cleavage between the methyl and carbonyl groups of the acetyl
intermediate in the acetoclastic reaction sequence. A normal

kinetic isotope effect associated with that reaction would ex-

plain the methyl group 6 tsC values as well. The fact that the

isotopic fractionations associated with both the methyl and
carboxyl groups are observed in the porewater pool of acetate

implies that the steps leading to the isotopically discriminating
reactions are reversible. Cell suspensions of Methanosar¢ina

barkeri catalyze rapid isotopic exchange between CO2 and

the carboxyl group of acetate (EIKMANNS and THAUER,

1984). Similarly, cell extracts of the same methanogen pro-

moted isotopic exchange between CO2 and acetyl-CoA, thus

providing direct evidence that the carbon-carbon bond

cleavage of acetyI-CoA is reversible (FISCHER and THAUER,

1990).

The second process is the isotopic exchange between the

carboxyl group and an external CO2 pool, as demonstrated

for Methanosarcina barkeri. Thus, the apparent fractionation

factor determined for the carboxyl group may not be simply

the result of a kinetic isotope effect as treated in our model.

The importance of the exchange reaction as an isotopically

controlling process will depend on the relative rates of the

isotopic exchange and the overall dissimilative process. Other

microorganisms, including Desulfobacterium autotrophicum

(SCHAUDER et al., 1986), Acetobacterium woodii (WINTER

and WOLFE, 1980), and the syntrophic acetate-oxidizer,
"'Reversibacterium," (ZINDER and KOCH, 1984) have ex-

hibited similar isotopic exchange capabilities. Carbon mon-

oxide dehydrogenase appears to be the enzyme responsible

for the exchange reaction in all of those microorganisms

(DIEKERT et al., 1985; THAUER et al., 1989). The extent to

which isotopic exchange occurs between acetate and CO2 in

Cape Lookout or other organic-rich marine sediments is un-

known but should clearly be investigated.

The similarity of the _J3C value of the total acetate molecule

in the upper 5 cm of sediment with that of the TOC fraction,

along with the model results, suggests that the fractionation

associated with the uptake by bacteria in the sulfate reduction

zone is relatively small. This conclusion, which is admittedly

based on a modest data base, merits discussion because of its

implications. The intramolecular carbon isotopic difference

(ca. 7%o ) in the 0-5 cm interval indicates that large isotopic

fractionations occur during the biosynthesis of acetate. For

an isotope effect of that magnitude not to be reflected in the

/_13C value of the total molecule, a large portion of the me-

tabolizable carbon must be shunted through acetate in the

sulfate reduction zone. This would also explain why the iso-

topic heterogeneity within the metabolizable organic carbon
fraction does not manifest itself more obviously. Qualitatively,

the isotope data is consistent with previous estimates that

40-60% of the remineralized organic carbon is shunted

through acetate in the sulfate reduction zone of coastal sed-

iments (SORENSEN et al., 1981; WINFREY and WARD, 1983).

A more quantitative estimate of the flow of carbon through

acetate would require substantial information concerning the

biosynthetic fractionations.

The similarity of the 6 _3C value of the surficial acetate to

that of the TOC fraction would appear to preclude the pos-

sibility that a significant portion of the acetate could be pro-

duced by acetogenic CO2-reduction because of the large iso-

tope effect associated with that process (GELWICKS et al.,

1989; PREUf3 et al., 1989). Instead, it is likely that the acetate

is synthesized via the more direct fermentation of organic

species. In contrast, isotope models have suggested that CO2-

reduction is an important source of acetate in freshwater sed-

iments (LAZERTE, 1981 ; GELWICKS et al., 1989 ). This con-
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tradicts the results of other studies, which indicate that <2%

of the acetate in eutrophic lake sediments was produced via

CO2-reduction (LOVLEY and KLUG, 1983b). The apparent

contradiction clearly illustrates how little is known concerning

acetate cycling and the associated isotope effects in different

environments and points out the need for further studies.

SUMMARY AND CONCLUSIONS

The impressive intramolecular carbon isotopic heteroge-

neity and downcore 6_3C variations exhibited by the dissolved

acetate at Cape Lookout Bight are compelling evidence for

the presence of large isotope effects associated with some as-

pect of acetate cycling. The downcore _ _3C profiles are con-

sistent with the hypothesis that both oxidative and dissimi-

lative processes consume acetate in the methanogenic zone

of the sediment (WARFORD et al., 1979; SANSONE and MAR-

TENS, 1982). The dominant isotopic fractionation appears

to be associated with the methanogenic dissimilation of ac-

etate. A fractionation factor for the conversion of the methyl

group of acetate to methane was estimated to be 1.032

_+ 0.014, which is in good agreement with that previously

measured in culture (RISATTI and HAYES, 1983; KRZYCKI

et al., 1987 ). The isotopic measurements of the acetate methyl

group coupled with estimates of rates of acetate cycling have

provided direct evidence in support of the hypothesis that

methane produced by the dissimilation of acetate is enriched

in _3C relative to that produced by CO2-reduction (WHITICAR

et al., 1986).

The secondary controls of the isotopic composition of ac-

etate are virtually unknown. Experiments employing chem-

ical inhibitors for microbial processes, e.g., MoO4 for sulfate

reduction, and radiotracer rate determinations coupled with

the natural abundance a3C/_2C measurements will provide

important information concerning both synthetic and cata-

bolic isotope effects. Culture studies of acetate-producing and

-consuming anaerobic microorganisms and their associated

isotope effects are needed to establish the isotopic signatures

of the different metabolic pathways. If the isotopic signature

of the sedimentary acetate can be understood, it would be a

sensitive indicator of in situ processes and their relative rates.

The isotopic measurements should prove useful in monitoring

temporal and spatial changes in the sedimentary microbial

ecosystem and the related diagenetic processes. As an example

in this study, the _ 13C measurements have indicated that the

methanogenic zone should not be viewed as a homogeneous

microbial ecosystem but instead appears to be stratified with

respect to acetate cycling processes. The exact nature and

cause of the stratification is unknown.

Isotopic measurements of diagenetic intermediates such

as acetate provide information which is different from, but

complementary to, that generated by other methods. In prin-

ciple, by looking at the natural abundance isotopic compo-

sition of a compound from a sediment, we are viewing the

result of in situ processes which have not been subjected to

the same potential artifacts commonly associated with ra-

diolabel and microbiological methods. Because of that char-

acteristic, the isotopic measurements should serve as unique

constraints on models derived from the results of other

methodologies.
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Abstract. The carbon isotopic composition of

methane produced in anoxic marine sediment is

controlled by four factors: (1) the pathway of
methane formation, (2) the isotopic composition of

the methanogenic precursors, (3) the isotope
fractionation factors for methane production, and

(4) the isotope fractionation associated with methane
oxidation. The importance of each factor was

evaluated by monitoring stable carbon isotope ratios

in methane produced by a sediment microcosm.
Methane did not accumulate during the initial 42-day

period when sediment contained sulfate, indicating
little methane production from "noncompetitive"
substrates. Following sulfate depletion, methane

accumulation proceeded in three distinct phases.

First, CO2 reduction was the dominant methanogenic

pathway and the isotopic composition of the methane

produced ranged from -80 to -94 %o. The acetate
concentration increased during this phase, suggesting

that acetoclastic methanogenic bacteria were unable to

keep pace with acetate production. Second, acetate
fermentation became the dominant methanogenic

pathway as bacteria responded to elevated acetate
concentrations. The methane produced during this

phase was progressively enriched in 13C, reaching a
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maximum 813C value of-42 %0. Third, the acetate

pool experienced a precipitous decline from >5 mM
to <20 IzM and methane production was again
dominated by COz reduction. The 813C of methane

produced during this final phase ranged from -46 to
-58 %. Methane oxidation concurrent with methane

production was detected throughout the period of
methane accumulation, at rates equivalent to 1 to 8%

of the gross methane production rate. Thus methane
oxidation was too slow to have significantly

modified the isotopic signature of methane. A

comparison of microcosm and field data suggests
that similar microbial interactions may control

seasonal variability in the isotopic composition of
methane emitted from undisturbed Cape Lookout

Bight sediment.

INTRODUCTION

Recent estimates place the cun'ent global methane

flux to the atmosphere at 543 ± 95 x 10 tz g CH4 yr q

[Cicerone and Oremland, 1988]. A relatively high

level of precision (±17%) is possible because the

global methane flux is calculated from three well-
characterized parameters: the size of the atmospheric
methane reservoir, the rate of change in atmospheric

methane concentration, and the average residence

time for atmospheric methane. Accurate estimates of
reservoir size and rate of change are provided by

concentration time series data from permanent

stations throughout the world [Blake and Rowland,
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1988]. Likewise, the residence time for methane is

tighdy constrained by atmospheric models of the

hydroxyl radical field (calibrated with methyl

chloroform distributions) and laboratory measure-
ments of the rate coefficient for the methane-

hydroxyl reaction [Prinn et al., 1987; Vaghjiani and

Ravishankara, 1991; Taylor et al., 1991; Fung et al.,
1991].

The contribution of individual sources to the total

methane flux is much more difficult to constrain. The

vast number and widespread geographic distribution
of significant methane sources means that detailed

studies of emission rates are limited to a relatively

small number of representative systems. The pre-
cision of source strength estimates based on direct

flux measurements is limited by spatial and temporal
variability and uncertainty in the areal distribution of

ecosystem types. The uncertainty of the global

methane flux calculated by summing individual
source terms is about e50% [Tyler, 1991].

Quantitative knowledge of individual source

strengths is of critical importance because atmos-
pheric methane concentrations have more than

doubled during the past 300 years [Pearman, 1986].

Since methane is a radiatively active trace gas, an
increase in the atmospheric methane reservoir could

alter the Earth's energy budget and contribute to

global-scale climate change [Cicerone and Oremland,
1988]. In addition, methane serves as a sink for the

hydroxyl radical and therefore plays an important
role in regulating the oxidizing power of the atmos-

phere [Cicerone and Oremland, 1988]. Accurate

source strength estimates are necessary to understand

the underlying causes of increasing atmospheric

inventories and to evaluate the efficacy of different
mitigation strategies.

The isotopic composition of carbon in the
methane molecule serves as a natural tracer of

source. Methane produced during biomass com-

bustion is enriched in _3C relative to that produced by
methanogenic bacteria [Stevens and Engelkemeir,

1988]. Fossil methane (from natural gas pipelines,

coal mining activities, clathrate decomposition, and

peat remineralization) can be distinguished on the
basis of its low _4C content [Wahlen et al., 1989].

The isotopic composition of atmospheric methane
can provide a global-scale estimate of the conui-

bution of bacterial, biomass burning, and fossil

sources to the global methane budget [Quay et al.,
1991].

The accuracy of source strength estimates based

on isotopic constraints is limited by variability in the

isotopic composition of methane produced by
individual sources. For example, 813C values of

methane emitted from a particular ecosystem (such as

a temperate wetland, Arctic tundra, or rice paddy)

can vary by as much as 20 to 30 %0 [Quay et al.,
1988; Tyler et al., 1988; Chanton and Martens,

1988]. The factors that conuibute to this variability
are not well understood.

• One important factor in controlling the stable
carbon isotopic composition of bacterial methane is
the mechanism of methane formation. Acetate fer-

mentation and CO2 reduction are thought to be the

dominant methane production pathways in nature

[Oremland, 1988]. However, methanogenic bacteria
are known to produce methane from alternative

compounds such as formate, methanol, methylated
amines, and methylated sulfur compounds

[Oremland, 1988]. These compounds serve as
important methane precursors in some environments

[Strayer and Tiedje, 1978; Oremland et al., 1982;

King et al., 1983; King, 1988], but their widespread
significance remains a matter of debate.

The isotopic composition of methane produced
by a particular pathway depends on the 813C of the

methane precursor and the isotope fractionation

associated with the production process (i.e., the
kinetic isotope effect). Therefore variations in

813C-CI-h are controlled by the relative contribution

of different methane production pathways, the

isotopic composition of the methane precursors, and
the kinetic isotope effect for each pathway. In
addition, aerobic and anaerobic methane oxidation

can alter the isotopic composition of the residual

methane reservoir [King et al., 1989; Alperin et al.,
1988].

Most field-based studies designed to characterize
the isotopic composition of methane emitted from

specific sources have not conducted the process-level
research necessary to understand the factors that

control 813C-CH4 variability. In this study, we moni-

tored the _5_3Cof methane produced by a laboratory
microcosm containing anoxic marine sediment from
Cape Lookout Bight, North Carolina. We concur-

rently measured methane production rates from COz

and acetate, methane oxidation rates, _13C-ECO2,

and a suite of key indicators of microbial processes.
We observed large variations over time in the _i_3Cof

methane produced by the microcosm. These vari-
ations can be attributed both to shifts in the relative

importance of CO2 reduction and acetate fermen-

tation, as well as changes in the isotopic composition
of the methane precursors. The variability in 813C-
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CH4canbeunderstoodintermsofsyntrophicand
competitiveinteractionsbetweenthemicroorganisms
involvedinorganicmatterremineralization.A
comparisonofmicrocosmandfielddatasuggests
thatsimilarmicrobialinteractionsmaycontrol
seasonalvariabilityintheisotopiccompositionof
methaneemittedfromCapeLookoutBightsediment.

METHODS

Study Site and Sediment Sampling

Sediment was collected from Cape Lookout

Bight, a shallow (10 m) barrier island lagoon located

70 km southwest of Cape Hatteras, North Carolina.
Organic carbon deposition at this site (165 ± 20 mol

m 2 yr q) is among the highest reported for a coastal

marine environment [Martens et al., 1992]. Sediment

oxygen penetration is restricted to several hundred

microns despite an air-saturated water column mixed
by strong tidal currents. Sediment metabolism is

dominated by microbial sulfate reduction and

methane production, with methanogenesis

accounting for about 30% of the annual integrated
organic matter remineralization [Martens and Klump,

1984]. Metabolic rates exhibit strong seasonality

driven by annual temperature changes of >20°C
[Klump and Martens, 1989]. Sulfate concentration

profiles are modulated by seasonal variations in
sulfate reduction rates; the vertical extent of the

sulfate reduction zone oscillates from >30 cm in the

winter to <10 cm in the summer [Crill and Martens,

1987]. Methane production rates are highest

immediately below the sulfate reduction zone [Crill
and Martens, 1986] and sediments are methane-

saturated below this horizon. During the summer,
methane bubbles form below 10 cm and low tide

ebullition occurs in response to reduced hydrostatic
pressure [Martens and Klump, 1980]. The 5L3C of
methane contained in these bubbles exhibits seasonal

variations of-10 %o [Martens et al., 1986; Burke et
al., 1987]. Sediment accumulation rates at this site

are approximately 10 cm yr -] [Chanton et al., 1983;
Canuel et al., 1990].

Sediment samples used in this study were col-
lected in July 1990 when sulfate reduction and

methane production rates were at their annual max-

imum. Cores were collected by SCUBA diver in

22 cm x 13 cm diameter Plexiglass tubes. The tubes

were gently inserted into the sediment and capped on
top and bottom before being carefully withdrawn.

The cores were kept in the dark at in situ temperature

(26.5°C) during transport to the laboratory.

Incubation Vessel

A large capacity syringe (hereafter referred to as

the "magnum syringe") capable of long-term
headspace-free incubations was constructed for this

study (Figure 1). The vessel was designed as a

syringe to allow for intermittent sample withdrawal
without introducing a headspace. The presence of a

headspace would significantly alter concentrations of
dissolved methane and ZCO2.

The syringe barrel was fabricated from 4-inch

(10.16 cm) ID Kimax Beaded Process Pipe with a
10-mm bore stopcock (Teflon plug) welded to one

end. The piston was constructed of solid polyvinyl

chloride (PVC) machined to provide a slide-fit within

the syringe barrel. A thin Teflon plate was secured to
the bottom of the piston to prevent contact between

sediment and PVC. Attempts at making a direct
O-ring seal between the piston and the barrel failed

due to variability in the inner diameter of the glass

Jltra-torr Fitting

Plston

Seals

Plate

4" I.d, Klmax BeaOed

Process Pipe

Perforated Teflon

Hlxlng Plate

)cock

V
Fig. 1. Magnum syringe for incubating -2 L
sediment under headspace-fi'ee, anoxic conditions.
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pipe.Thereforethepistonwassealedtothebarrelby
meansofacustomfabricatedcouplingthatprovided
anO-ringsealtothebarrelflangeandadouble
O-ringsealaroundthepiston.Sedimentwithinthe
magnumsyringecouldbehomogenizedwithoutair
contactbychurningwithaperforatedTeflonmixing
plateconnectedtoaTeflonrodthatpassedthrougha
slightlyoversizedholeboredthroughthecenterof
thepiston.Themixingrodwassealedtothetopof
thepistonwithanUltra-torrfitting(CajonVacuum
Products)thatprovidedagas-tightsealwhile
allowingforaxialmovement.

Themagnumsyringewasfilledwithsediment
fromthe0to3cmdepthinterval.Sixcoreswere
pooledtogiveatotalsedimentvolumeof-2L.The
pistonwaspositionedinsuchawayastoexclude
gaspocketsandfastenedinplacebysecuringthe
coupling.Themagnumsyringewassampledat
weeklyintervalsbydisplacing120mLofsediment
intotwo60-mLcatheter-tipplasticsyringesthatfit
snuglyinthearmofthestopcock.A largechain
clampimmobilizedthepistonbetweensampling
intervals.Thesedimentwashomogenizedpriorto
eachsamplingbychurningsedimentthroughthe
mixingplate.Themagnumsyringewasincubatedin
thedarkat22±I°C.

Concentration Measurements

Sulfate, acetate, and ECO2 concentrations were
determined on interstitial water exu'acted from whole

sediment by centrifugation. Care was taken to pre-
vent sediment and interstitial water from contacting

air. Sediment was transferred to an argon-flushed

30-mL centrifuge tube and spun at 6000 G for

15 min. The centrifuge tube was filled to the top to

minimize loss of gaseous COz into the headspace
volume. Following centrifugation, supernatant fi'om

just above the solid-liquid interface was pipetted

using a long stainless steel needle fixed to a 5-mL

glass syringe. The interstitial water was passed

through a 0.45-1am syringe filter; the first milliliter of
filtrate was discarded.

Sulfate concentrations were determined using a

Dionex 2010i ion chromatograph. In order to mini-
mize sulfide oxidation in the sample, 1.0-mL inter-

stitial water was filtered directly into an argon-

flushed vial containing 100-1aL 10% (V/v) HC1 and

stripped of volatile sulfur compounds by bubbling

with O2-free argon. The samples were diluted 1:10

with distilled water and passed thru an ONGUARD-

Ag pretreatment cartridge (Dionex Corporation) to

remove chloride. The large quantity of chloride in

interstitial water (-600 mM) interferes with low-level

(<1 mM) sulfate determinations; ",ffter chloride
removal the detection limit for sulfate was 5 laM.

Acetate concentrations were determined by

HPLC using precolumn derivatization with 2-nitro-

phenylhydrazine [Albert et al., 1992]. The deriva-
tives were prepared directly in the pore water and

separated by a C8 reversed phase column with

buffered, ion-pairing solvent. The detection limit for
this method is 0.5 I.IM; the precision is typically
±5%.

Interstitial water for ZCO2 analysis was stored in

3.5-mL Pyrex screw-cap vials filled to just below the

rim and capped with Teflon-faced silicone septa.
Loss of CO2 into the gas phase was prevented by

displacing the headspace with a 4-mm Pyrex rod

inserted through a hole in the septum. The ECO2
concentrations were determined using the inorganic
carbon channel of a Shimadzu TOC-5000 total

carbon analyzer. Samples (25 laL) were injected

directly into a gas stripping chamber containing
25% (v/v) H3PO4. The CO2 released upon acidifi-

cation was quantified by a nondispersive infrared
detector.

Whole sediment methane concentrations were

measured by a headspace equilibration technique
[Alperin and Reeburgh, 1985]. Whole sediment
concentrations include methane dissolved in the pore

water as well as methane bubbles trapped in the

sediment. Sediment (2.5 mL) was transferred to a

tared 30-mL serum vial containing 3-mL 0.1 N

NaOH, sealed with a silicone stopper, and thor-

oughly vortex-mixed to disperse the sediment and

equilibrate the gas and aqueous phase. An aliquot of

the headspace was analyzed for methane by a
Shimadzu Mini-2 gas chromatograph equipped with

flame ionization detector. Standards were prepared

by injecting pure methane into sealed 30-mL serum
vials containing 3-mL 0.1 N NaOH and 2.5-mL

distilled water. Samples and standards were kept at

the same temperature and had equal volumes of

aqueous phase and headspace, so corrections for the

quantity of dissolved methane were not necessary.
Whole sediment methane concentrations were con-

verted to pore water units by dividing by sediment

porosity.

Rate Measurements

Sulfate reduction [Albert et al., 1992], methane

production from acetate [Crill and Martens, 1986],
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methaneproductionfromCOz[CfillandMartens,
1986],andmethaneoxidation[Alperinand
Reeburgh,1985]ratesweredeterminedbyprevi-
ouslydescribedradiotracertechniques.Briefly,
wholesedimentwastransferredtogas-tight2.5-mL
glassincubationsyringesandinjectedwithmicroliter
quantitiesofradiotracer(35SO41,[U-14C]acetate,
[14C]-HCO3,or14CH4).Thesampleswereincu-
batedat22+I°Cforatimeintervalsufficientfor
1to10%ofthetracerpooltoturnover.Theincu-
bationtimewasgenerally24hours,exceptsamples
injectedwith[U-14C]acetatewhichhadincubation
timesrangingfrom10rainto27hours.Attwotimes
(93and107days),thesamplesamendedwith
[U-14C]acetatewereincubatedsufficientlylongthat
40-60%ofthetracerturnedover.Methanepro-
ductionratesfromacetateatthesetwotimesare
consideredtobeunderestimated.

Sedimentsamplesassayedforsulfatereduction
ratewere"killed"byfreezingtheincubation
syringes.Forotherratemeasurements,theincu-
bationwasterminatedbyextrudingthesedimentinto
serumvialscontainingNaOHsolution.Theserum
vialswerequicklysealedwithbutyl-rubberorsili-
conestoppersandstoredfrozenandupside-down(to
retardgasloss)untilanalysis.Collectionandquan-
tificationofradioisotopeswasaccordingtopublished
procedures(referencesgivenabove).Therateswere
calculatedfromthefollowingequation:

a_

Rate=[C]A t'

where [C] is reactant concentration (i.e., sulfate,

acetate, ZCOz, or methane), a and A are activities of

recovered product and added reactant, respectively,
_x is the fractionation factor for the tracer isotope

(_4C or 35S) relative to the dominant natural isotope

(12C or 32S), and t is the incubation time. The isotope
fractionation factor was taken to be 1.12 for methane

production from CO2 [Blair et al., 1992], 1.06 for

methane production from acetate [Blair and Carter,

1992], 1.02 for methane oxidation [Alperin et al.,

1988], and 1.045 for sulfate reduction [J¢rgensen,
1978]. Note that isotope discrimination for _4C is

twice that for 13C [Stem and Vogel, 1971].

Stable Isotope Measurements

The _SL3C-ECO2 analyses were done on 1.0-mL

aliquots of filtered interstitial water stored in 3-mL

serum vials capped with silicone septa. Samples
were acidified with 0.5-mL 1 M H3PO4 and stripped
with helium into a gas purification line [Schaff et al.,

1992]. Air and CO2 were separated by a GC column
packed with porous silica beads (Unibeads 1S,

Alltech Associates) and quantified by a thermal

conductivity detector (Gow Mac Corporation). The

COz peak was collected in a cryogenic trap (- 196°C)
fashioned from six loops of 1/8 inch (0.318 cm)

stainless steel tubing. The helium was pumped away,
and the CO2 was transferred to a Pyrex breakseal

ampoule for introduction to the isotope ratio mass
spectrometer.

For _13C-CH4 analysis, 10-mL whole sediment

was transferred to a 60-mL serum vial containing
5-mL 1N NaOH and sealed with a black butyl rubber

stopper. The sample and base were thoroughly

slurried and an aliquot of the headspace was trans-

ferred to a gas-tight syringe and injected into a

combustion line. The sample was flushed with

helium carrier gas through a cryogenic trap (-196°C)
to remove CO2 and H20 and into a combustion tube

packed with CuO at 780°C. The CO,, and H20

resulting from methane combustion were passed thru
a multiloop trap maintained at -120°C (to remove

HzO), and the CO2 was collected in a breakseal

ampoule.

Carbon isotopic analyses were performed with a

Delta E ratio mass spectrometer (Finnigan-Mat)

equipped with a modified low-volume inlet system

[Hayes et al., 1977]. The precision of the 613C
analysis was + 0.1 °/oo.

RESULTS

Changes in sulfate, methane, acetate, and ZCO2

concentrations during the 114-day incubation period
are summarized in Figure 2. The sulfate concen-
tration decreased fi'om 18.6 mM at the outset to

0.19 mM at 42 days (Figure 2a). Alter 50 days,

sulfate leveled off at 10 to 20 laM, comparable to the
threshold concentration below which sulfate

reduction stops for pure cultures of Desulfi_bacter

postgatei [Ingvorsen et al., 1984].

The methane concentration remained relatively

constant (-0.2 mM) until sulfate was depleted to
<0.2 mM (Figure 2a). Following sulfate depletion,

the methane concentration increased, exceeding the
saturation level (1.2 mM [Yamamota et al., 1976])

after 70 days. Since the immobilized magnum

syringe piston restricted headspace formation, subse-

quent methane production resulted in a pressure

buildup. The coupling that sealed the piston to the
barrel was not capable of containing positive pres-

sures and methane was inadvertently lost. The
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Fig. 2. Changes in pore water concentrations during

the 114-day incubation period. (a) Sulfate and
methane; (b) acetate and ZCO2. With the exception of
acetate, error bars represent the standard deviation of

triplicate analyses. A standard deviation of + 5% is
assumed for acetate concentrations. The absence of

an error bar indicates that the standard deviation is

smaller than the symbol. The hatched line denotes the

time that pore water sulfate concentrations were

depleted to <0.2 mM.

decrease in methane concentration after 85 days is

due to gas loss from the magnum syringe rather than
net methane consumption (see below).

The acetate concentration ranged from 1 to 9 p.M

during the initial 42-day period when sediment
contained appreciable sulfate (Figure 2b). Acetate

concentrations <10 IaM are typical for sulfate-

containing marine sediment [Ingvorsen et al., 1984].

Following sulfate depletion, acetate began to accu-
mulate in the sediment, reaching a peak concentration

of 5.3 mM at -80 days. The period of acetate accu-

mulation was immediately followed by a period of

dramatic depletion as concentrations fell to 5 I.tM in

just 14 days.
The 7_,(2(}2concentration increased rapidly during

the period that sediment contained sulfate (Figure

2b). Sulfate and £CO2 concentrations during the

initial 42-day period are highly correlated (r2 = 0.99),

suggesting that sulfate served as the dominant
terminal electron acceptor for organic matter reminer-

alization. The slope of the 1;CO2 versus sulfate plot
(A[,_,CO2]/A[SO42"]) is - 1.7 ± 0.1, suggesting that

sediment organic carbon remineralized in the mag-

num syringe experiment had an average oxidation
state somewhat less than carbon in pure carbohy-

drate.

The rate of increase of £CO2 tapered off fol-

lowing sulfate depletion. This is primarily due to a

delay in £CO2 production caused by pooling of car-
bon in the acetate reservoir. However, the gas loss
that occurred when methane concentrations exceeded

saturation may also have contributed to a reduced rate
of dissolved ZCO2 accumulation. Gas equilibrated

with sediment pore waters (pH 7) having a ZCOz
concentration of 50 mM will have a CO2 partial pres-

sure of 0.2 atm [Stumm and Morgan, 1981]. There-

fore £CO2 concentrations in samples collected after

methane concentrations exceeded saturation should

be regarded as lower limits.

Sulfate reduction, methane oxidation, and

methane production rates are presented in Figure 3.
Sulfate reduction rates measured by the 35S tracer
method are consistent with rates calculated from

changes in sulfate concentration. Sulfate reduction

rates fell off rapidly from the outset (Figure 3a),

suggesting a rapid depletion of the most reactive

fraction of the organic carbon pool [Westrich and
Bemer, 1984]. Since sulfate concentrations through-

out most of the sulfate reduction period were well in
excess of the haif-saturation constant for sulfate

reducing bacteria (0.2 mM [Ingvorsen et al., 1984]),

it is unlikely that the initial decline in the sulfate
reduction rate was due to sulfate limitation.

Methane oxidation rates remained near baseline

level throughout the period that sediment contained

sulfate (Figure 3a). Note that methane concentrations

during the initial 42 days (-0.2 raM, Figure 2a) were

sufficient to support moderate rates of oxidation.

Following sulfate depletion, methane oxidation rates

began to increase, achieving maximum values
between 80 and 100 days. The methane oxidation

rate at all times represents a small fraction (1 to 8%)

of the total methane production rate (see below).
Methane oxidation rates integrated over the 114-day

experiment account for only 2.4% of the integrated

methane production. Net methane oxidation was not

observed during this experiment.
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Fig. 3. Changes in rates of microbial processes

during the 114-day incubation period. (a) Sulfate
reduction and methane oxidation; (b) methane
production from COz and acetate. Rates of methane

production from acetate at 93 and 107 days are
considered to be underestimated because 40 to 60%

of the tracer turned-over during the incubation

period. The error bars represent the standard

deviation of rates measured in two to four (generally
3) replicate samples. The absence of an error bar
indicates that the standard deviation is smaller than

the symbol. The hatched line denotes the time that

pore water sulfate concentrations were depleted to
<0.2 mM.

Methane production rates from CO2 and acetate

were negligible during the period that sediment con-

tained sulfate (Figure 3b). The absence of CO2 re-

duction and acetate fermentation in the presence of

sulfate is consistent with the well-established prin-

ciple that sulfate-reducing bacteria out-compete
methanogens for H2 and acetate [Kristjansson et al.,

1982; Schonheit et al., 1982]. Following sulfate

depletion, methane production rates from CO2 and

acetate began to increase, but the two methanogenic
pathways followed very different patterns. Methane

production from CO2 increased steadily, reached a

maximum rate of- 100 laM d-], and gradually

declined. In contrast, methane production from

acetate began relatively slowly, increased sharply to

-400 uM dq, and then decreased dramatically to very
low levels.

Relatively constant methane concentrations

(Figure 2a) and very low rates of oxidation in

sulfate-containing sediment (Figure 3a) suggest little

methane production fi'om "noncompetitive" sub-

strates (i.e., compounds not metabolized by sulfate-
reducing bacteria). Therefore acetate fermentation
and CO2 reduction are assumed to be the dominant

pathways for methane production throughout the

experiment. Total methane production rates (Figure

4a) are calculated as the sum of methane production
from CO._ and methane production from acetate.
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time that pore water sulfate concentrations were
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Thefractionofmethanederivedfromacetate(F)
variedconsiderablyoverthecourseoftheexperiment
(Figure4b).Followingthesulfate-methanetran-
sition,CO:reductionaccountedforthebulkofthe
methaneproduction.Asacetateaccumulatedinthe
porewaters(Figure2b),themethanogenicpathway
shiftedandacetatebecamethemajormethanepre-
cursor.Acetatefermentationdominatedmethane
productionuntiltheacetatereservoirwasfully
depleted.Atthispoint,CO2reductionresumedits
roleasthedominantmethanogenicpathway.Over
thecourseoftheexperiment,acetatefermentation
accountedfornearly60%ofthetotalmethane
production.

TheZCO2andmethanereservoirexperienced
largechangesin isotopiccompositionoverthecourse
ofthe114-dayexperiment(Figure5).Duringthe
periodthatsedimentcontainedsulfate,813C-T-,CO2
valuesdecreasedonlyslightly(Figure5a),despitea
largeincreaseinZCO?concentration(Figure2b).

ThissuggeststhattheCOzproducedbyorganic
matterremineralizationhada513Csimilartothe
initialvalueoftheZCOzpool.Followingsulfate
depletion,theECOzreservoirbecameprogressively
enrichedin_3C.

The_513C-CH4valuesremainednearlyconstant
(-59to-61°/oo)priortotheonsetofmethanogenesis
(Figure5b).Thelowmethaneconcentrationsduring
thisinitialperiodreflectmethanethatwaspresentin
the0to3cmintervalatthetimethesedimentwas
collected.Theinitial_St3C-CH4valuesaresimilarto
thoseformethaneingasbubblescollectedfromCape
LookoutBightsedimentinJuly(-59to-62°/oo)
[Martensetal.,1986;Burkeetal.,1987].Following
sulfatedepletion,themethanereservoirunderwent
substantialvariationsin_5t3C.The813C-CH4initially
droppedfrom-61to-88°/,,_,graduallyincreasedto
-47°/oo,anddecreasedslightlytowardtheendofthe
experiment.

DISCUSSION
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Fig. 5. Changes in 813C values during the 114-day
incubation period. (a) _iI3C-ZCO2; (b) _13C-CH4.

Samples were not analyzed for 5t3C during the first

6 days of the experiment. The hatched line denotes

the time that pore water sulfate concentrations were

depleted to <0.2 raM.

The isotopic composition of methane in the

magnum syringe varied by more than 40 °/oo over the
course of the experiment (Figure 5b). In the fol-

lowing section, we evaluate the relative importance

of changes in methanogenic pathway, precursor

isotopic composition, and kinetic isotope effects in
controlling the observed variations in _13C-CH4.

Since integrated rates of methane production are

-40 times greater than methane oxidation, it is

unlikely that methane oxidation played an important
role in controlling the isotopic composition of
methane.

The discussion is divided into four sections. The

first section examines the relationship between

813C-CH4 and the methane production pathway. The

second section provides constraints on variations in

the isotopic composition of the major methane pre-
cursors (CO2 and acetate). The third section de-
scribes the microbial interactions that may have

played a role in regulating both methane production

pathways and substrate isotopic composition. The
final section compares the results of the microcosm

experiment with in situ seasonal variations in isotopic

composition of methane emitted from Cape Lookout

Bight sediments.

$13C-CH4 Versus Methane Production Pathway

Measured _13C-CH4 values (Figure 5b) reflect

the isotopic composition of methane accumulated in
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themagnumsyringe.Beforewecanexaminethe
relationshipbetween_L3C-CH4 and methane pro-

duction pathway, the 813C of the methane produced

during a discrete time interval must be determined by

an isotope mass balance calculation. Since the pos-

itive pressures that developed in the magnum syringe
when methane concentrations exceeded saturation

resulted in gas loss, methane concentrations must be
corrected before mass balance constraints can be

applied.

Methane concentrations corrected for gas loss.

Methane concentrations calculated by integrating

production rate data are unaffected by gas loss from

the magnum syringe and therefore reflect the total

quantity of methane produced during the experi-
mental period. The methane concentration at time t2 is

equal to the concentration at time h plus the time

integral of the total methane production rate (MPR)

(Figure 4a):

2

[CH412 = [CH4]l + _ MPR dt . (1)
1

Calculated (equation (1)) and measured concen-

trations began to diverge as the methane concen-

tration approached saturation (Figure 6). By the end

of the experiment (114 days), the measured methane
concentration represents less than 10% of the
calculated value.

Isotopic composition of methane produced. The

isotopic composition of methane produced in the
magnum syringe (S13C-MP) during any discrete time

interval (e.g., tl to t2) can be calculated by an isotope

mass balance equation:

513C-MP =

(_13C-CH4)2 [CH412 - (_I3C-CH4)I [CH4]I

[CH4]PROD
, (2)

where [CH4]PROD is the concentration of methane

produced during the time interval h to t2.
Two factors must be considered before applying

(2) to the magnum syringe experiment. First, the gas

phase that appeared when methane concentrations

exceeded saturation could lead to isotopic fraction-

ation if there was an isotope effect associated with
transfer of dissolved methane to the gas phase.

Bernard et al. [ 1976] have shown that there is little

isotopic fractionation between CHa(aq) and CHa(g)

14
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Fig. 6. Changes in measured and calculated methane
concentrations during the 114-day incubation period.
The method used to calculate methane concentrations

is described in the text. The arrow on the concentra-

tion axis marks the dissolved methane concentration

equivalent to a partial pressure of 1 arm. The hatched
line denotes the time that pore water sulfate concen-

trations were depleted to <0.2 mM.

(0.3 °/oo), so formation of a gas phase would not

have an appreciable effect on the isotopic compo-
sition of the dissolved methane pool.

Application of (2) is further complicated by the

large fraction of the methane production that was lost

from the magnum syringe when positive pressures

developed (Figure 6). Since effusive transport dis-
criminates between 12C- and 13C-methane according

to Graham's law [Mason and Kronstadt, 1967], gas
loss via this mechanism would cause methane re-

maining in the magnum syringe to become enriched
in 13C. In order for effusive transport to occur,

methane must pass through an orifice without col-

liding with other gas molecules. This requires that
the diameter of the leak in the O-ring seal be less that

the mean free path of the methane molecule (46 rim).

The effusive flux through a hole this size can be cal-

culated [Mason and Evans, 1969] by assuming the

leak to have cylindrical geometry with length equal to

the O-ring cross section (3 mm). The effusive flux
(-10 .8 mmol d l) is 7 orders-of-magnitude less than
the actual leak rate (0.1 to 0.4 mmol d -l) estimated

from the difference between calculated and measured

methane concentrations (Figure 6). This implies that

pressure-driven gas transport from the magnum
syringe must have occurred by other mechanisms.
Since there is no mass discrimination during turbu-

lent or viscous flow [Halsted and Nier, 1950], gas

loss through faults in the O-ring coupling is unlikely
to alter the 813C value of the methane.
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Methanelossdidreducethesizeofthereservoir,
however,sothattheisotopiccompositionofany
methaneproducedhadaproportionatelygreater
effectonthecumulative813C.Theeffectofgasloss
ontheisotopiccompositionofthemethanereservoir
wascorrectedinthefollowingway.Cubicspline
functions[Ahlbergetal.,1967]werefit tothemeas-
uredandcalculatedmethaneconcentration(Figure6)
and8_3C-CH4data(Figure5b)toallowinterpolation
atanyhandtz.Lossofmethanefromthemagnum
syringewascompensatedbycalculatingthemethane
concentrationatt2as

[CH412 = [CH4]I + [CHa]PROD , (3)

where [CH4]PROD = [CH4] 2 - [CH4] 1 . (4)

The asterisks indicate calculated (as opposed to
measured) methane concentrations. Thus [CHa]2 in

(3) represents the methane concentration that would

be present at t2 if there was no gas loss during the

time interval h to t2. Any gas loss is treated as though
it occurred during an infinitesimal time interval just
after t2 •

The _t3C of methane produced during the time

interval tl to t2 was corrected for the effect of gas loss

by combining (2), (3), and (4). The time step (t2 - h)
was made sufficiently small (0.1 day) that the calcu-
lated _13C-MP closely approximates the _13C of

methane produced during any instant. The _513Cvalue

of methane produced during a finite time interval
(e.g., between consecutive magnum syringe

samples) was then calculated by integrating
instantaneous [CH4]PROD and 513C-MP values:

B

f([CH4]PROD 513C-MP) dt

_I3C_MP = A
B

_[CH4]PRO D dt
A

, (5)

where A and B represent the beginning and end of
the time interval of interest.

The _513Cof methane produced by the sediment

microcosm (calculated by equation (5)) varied

between -94 and -42 %0 (Figure 7). The range
(52 %0) is greater than that of the measured values

because the cumulative reservoir represents an inte-

grated isotopic composition. The isotopic compo-
sition of the cumulative reservoir tracks

5]3C-MP fairly closely (cf. Figures 5b and 7)

because methane continuously escaped from the

magnum syringe once the methane concenU'ation
exceeded saturation.

There is no simple relationship between the _3C

of the methane produced in the magnum syringe and

the methane production pathway. For example, CO2

reduction dominated methane production (accounting
for -70% of total production) both at the outset of the

methanogenic period and toward the end of the ex-

periment (Figure 4b). However, methane produced

during the initial period (-80 to -94 %0, Figure 7)
was highly depleted in 13C relative to the methane

produced during the later period (-46 to -60 %0). A

simple relationship between 5J3C-CH4 and methane

production pathway is expected only if the methane

produced by each mechanism has a distinct isotopic
composition. The absence of such a relationship
indicates variability in the 513C value of methane

produced by a particular pathway. Such variability

can be driven by changes in the isotopic composition
of the methane precursors (CO2 and acetate) and/or

changes in the magnitude of the kinetic isotopic effect
associated with each methane production mechanism.

Overall isotope mass balance. Conservation of

mass requires that the end products of organic matter
degradation (C02 and methane) have the same cumu-

lative isotopic composition as the remineralized

organic carbon. The isotopic composition of the
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Fig. 7. Changes in isotopic composition of methane
produced (_SI3C-MP) during the 114-day incubation

period. The solid horizontal bars represent the 513C

of methane produced between consecutive sampling

intervals. The shaded region represents the _3C of

methane produced by CO2 reduction. Details of the
calculations are given in the text. The hatched line

denotes the time that pore water sulfate concen-

trations were depleted to <0.2 mM.
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labileorganiccarbonshouldnotbedirectlyaffected
bythenatureoftheterminalelectronacceptor.Them-
forethe813Coforganiccarbonremineralizeddining
theperiodofsulfatereduction (_I3C-CoRG[SR])

should be similar to the 813C of organic carbon

remineralized during the period of methane pro-
duction (813C-CoRG[MP]).

Since CO2 is the sole end product of organic

matter decomposition in sulfate-containing sediments
(Figure 2), the 813C of organic carbon remineralized

during the period of sulfate reduction is simply calcu-
lated as the 8_3C value of the ECOz produced:

813C-CoRG[SR] = (SI3c-Y'CO2)FIN [_CO2]FI N
[ECO2]FIN- [ECOzhsl

(813C-ECO2)INI [ZCO2]IN I

[ZCO2]FI N - [ECO2]IN [ '
(6)

where INI and FIN denote [ZCO2] or 813C-1_C02 at

the start of the experiment and at the time that sulfate

became depleted (day 42), respectively. Between 14
and 42 days, the ECO2 concentration increased from

37.6 to 55.2 mM (Figure 2b), while the 813C-ZCO2

decreased from -13.4 to -14.1%o (Figure 5a). The

8_3C value of organic carbon remineralized during
the period of sulfate reduction (8 IsC-CoRG[SR]) is

-15.6 %0 (equation (6)). This value differs from the

813C of the bulk organic carbon in Cape Lookout

Bight sediments (-18 to -20 °/oo) [Blair et al., 1987;

Martens et al., 1992; Blair and Carter, 1992],

suggesting preferential remineralization of an organic
matter component that is enriched in 13C relative to

the bulk phase. This result seems to contradict

previous studies showing no downcore variations in
813C of particulate organic carbon in sediments from

Cape Lookout Bight [Blair et al., 1987; Martens et

al., 1992; Blair and Carter, 1992]. However, the

quantity of organic carbon converted to CO2 and
methane during the 114-day experiment (40.4 mM)

represents a small fraction (-2%) of the particulate

organic carbon pool. Therefore it is not surprising
that preferential remineralization of a _3C-rich labile

fraction is not detected in 8_3C profiles of total
organic carbon.

Since CO2 and methane are both end products of

organic matter decomposition in sulfate-depleted sed-

iments, the isotopic composition of organic carbon

remineralized during the period of methane produc-
tion is calculated as the weighted average 81aC of the

ZCO2 and methane produced:

813C-CoRG[MP] =

(813C-ECO2)FIN [Y'.CO2] FIN

[]_CO2]FIN - [ECO2]INI + [CH4IFIN - [CHa]INI

(813C-T'CO2)INI [ZCOz]IN I

[ECO2]F[ N - [ZCOz]IN l + [CH4]FIN - [CH4]INI

(813C-CH4)FIN [CH4] FIN

[ZCO2]FI N - [ZCO2]IN 1 +

(813C-CH4)INI

[CH4]FIN - [CH4]INI

[CH4]INI

, (7)
['_CO2]FIN - []_CO2]INI + [CH4]FIN - [CH4]INI

where INI and FIN denote the concentration or 813C

value at the start of the methane production period

(day 42) and at the end of the experiment (day 114),
respectively. The ZCO2 and methane concentrations

at day 42 were 55.2 and 0.12 mM, respectively
(Figure 2). The final methane concentration

(13.5 mM, Figure 6) was calculated by correcting for

gas loss using (1). The final ZCO2 concentration

(64.6 mM) was also corrected for gas loss using an

equation analogous to (1). The ZCO2 production rate

was set equal to 0.7 times the total methane pro-

duction rate (MPR). This stoichiometry is based on
the oxidation state of labile organic carbon inferred

from the AZCO2/ASO42 ratio (-1.7). The 813C-CH4
and 81Sc-zco2 values at day 42 were -61.4 °/oo and

-14.1%0, respectively (Figure 5). The final 813C-

CH4 value (-66.6 %o) was corrected for gas loss by
integrating 813C-MP (equation (5)) over the entire

114-day interval. Note that this value represents the

cumulative 813C-CH4 and differs substantially from

the measured value at day 114 (-50.8 %,,). The final
813C-ECO2 value (-3.9 %o) was also corrected for

gas loss using an equation analogous to (5). How-
ever, for the ZCO2 pool, isotopic fractionation

between ZCO2(aq) and CO2(g) [Deuser and Degens,
1967; Wen&, 1968] was taken into account. The

813C value of organic carbon remineralized during
the period of methane production (813C-CoRB[MP]) is

- 16.0 °/oo (equation (7)).

The isotope mass balance provides a check on the
accuracy of the 813C-MP calculation. The 813C value

of organic carbon remineralized during the period of
sulfate reduction (8_SC-Cor_B[SR]) is based entirely
on measured concentration and 8_3C values. In
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contrast,the5t3Cvalueoforganiccarbonreminer-
alizedduringtheperiodofmethaneproduction
(_I3C-CoRG[MP])isbasedonconcentrationand_13C
valuescorrectedforgaslossaccordingto(2)-(5).
Agreementbetween_I3C-CoRG[SR](-15.6%0)and
513C-CoRG[MP](-16.0%o)indicatesthatcalculated
_13C-MPvaluesareconsistentwiththeconstraint
thatthemicrocosmmaintainanoverallisotopemass
balance.

_13 C-CH4 From C02 and Acetate

The relationship between _13C-CH4 and the

methanogenic pathway can be complicated by con-

current changes in the isotopic composition of the

methanogenic substrates (CO2 and acetate) and/or

variability in the magnitude of the kinetic isotope
effect for the methane production pathways (CO2
reduction and acetate fermentation). In this section,

we examine how these factors may have played a
role in controlling the stable carbon isotopic compo-

sition of methane produced by the sediment
microcosm.

Methane from C02 reduction. There is a large

kinetic isotope effect associated with bacterial CO2
reduction to methane. The magnitude of this effect is

expressed as an isotope fractionation factor (O.CR),
defined as the ratio of methane production rates from

12C- and 13C-COz no_xnalized to the isotopic abun-

dance in the reactant molecule [Rees, 1973]:

12C-MPC/[12CO2] (8)
ff'CR= 13C_MPC][ISc02] '

where MPC denotes the rate of methane production

via COz reduction.

If we let RMPC= 13C-MPC/I'_C-MPC and

Rico2 ] = [13CO2]/[12CO2], (8) can be written as

Rico21
RMpC =- .

o_a
(9)

It follows from the definition of _13C [Craig, 1957]
that

813C-MPC = _13C-CO2 + 103 - 103, (10)

where _I3C-MPC represents the isotopic composition

of methane produced from CO2 reduction. This treat-
ment assumes that CO2 (as opposed to HCO3 or

CO3 z) is the form of inorganic carbon utilized by

methanogenic bacteria [Fuchs et al., 1979].

The isotopic composition of methane produced

from CO2 at any time during the magnum syringe

experiment can be determined from the 813C of the

COz pool and the isotope fraction factor (equation
10). While _i13C-CO2 values are easily calculated

from 813C-ZCO2 data [Deuser and Degens, 1967],

there is considerable uncertainty regarding the iso-

tope fractionation factor for methane production from

COz. Laboratory cultures of methanogenic bacteria

grown autotrophically on H2-CO2 yield fractionation

factors that range from 1.025 to 1.061 (mean: 1.041,
n = 7) [Oremland, 1988]. It is not clear whether this

high degree of variability is due to differences in
experimental conditions or differences between

methanogenic species. For example, a single species

(Methanobacterium thermoautotrophicum) grown in
a sealed batch culture [Games and Hayes, 1976] and

a flow-thru fermentation system [Fuchs et al., 1979]

yielded isotope fractionation factors that differed by
10 %. Likewise, different species (Methanobac-

terium barkeri and Methanosarcina bryantii) grown

under identical conditions had isotope fractionation

factors that differed by 28 %o [Games and Hayes,
1976].

Aside from interspecies and inu'aspecies vari-

ability, there are reasons why in vitro fractionation

factors may not apply to natural methanogen popu-
lations. First, the magnitude of the fractionation

factor may be a function of the methane production

rate. Laboratory cultures fed an 80/20 (V/v) mixture of

H2-CO2 generally have higher production rates than
methanogenic bacteria in natural ecosystems.

Second, most laboratory measurements of isotope

fractionation by methanogenic bacteria were con-

ducted at elevated temperatures (37 ° to 65°C).

Thermodynamics predicts that carbon isotope
fractionation between CO2 and methane decreases

with increasing temperature [Bottinga, 1969],

although it is not clear whether the kinetic isotope

effect for bacterial methane production follows the
same relationship. Third, the isotope fractionation

factor may be species-specific and the bacteria used

in the culture studies are unlikely to be representative

of natural methanogen populations.

One approach to deriving fractionation factors

applicable to methanogenic populations in aquatic

sediments is based on in situ isotopic differences
between methane and CO2. In sediment where CO2

reduction is the exclusive methane source, the
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isotopefractionationfactorcanbeestimatedfrom
paired_513C-CO2and _13C-CH4 data (equation (10)).
Evidence based on the deuterium content of methane

and its formation water suggests that COs reduction

is the dominant methanogenic pathway in many

marine sediments [Whiticar et al., 1986]. An
extensive compilation of paired 8t3C-CI--I4 and

813C-CO2 data from a wide variety of marine sedi-

ment environments predicts a fractionation factor for
CO2 reduction of 1.070 ± 0.020 [Whiticar et al.,

1986].

A more rigorous approach to estimating
fractionation factors for COz reduction in aquatic
sediments takes into account the contribution of

different methane production pathways, the intra-

molecular isotopic composition of acetate, and the

kinetic isotope effect for acetate fermentation. This

approach was used to estimate fractionation factors

for COz reduction in Cape Lookout Bight sediments

[Blair et al., 1992]. Isotope fractionation factors for
summer ( 1.056 ± 0.004) and winter (1.062 ± 0.002)

conditions fall within the range of values calculated
from the paired 6t3C-CH4 and 8t3C-CO_ data.

The isotope fractionation factors for Cape

Lookout Bight sediment [Blair et al., 1992] were
used to calculate 8_3C-MPC values (equation (10))

for methane produced by the sediment microcosm.

An average _cR value (1.06) was used because
seasonal variations are relatively small. A rather large

range (±0.01) was adopted to allow for uncertainty

in the value of the isotope fractionation factor.

The stable carbon isotopic composition of

methane derived from CO2 is denoted by the stippled

region in Figure 7; the upper and lower limits con'e-
spond to o_cR = 1.05 and otcR = 1.07, respectively.

The trend toward more positive 813C-MPC values
with time is due to the shift in 8_3C-ZCO2 during the

period of methane production (Figure 5a). The pro-
gressive enrichment of _3C in the £CO2 pool is due,

at least in part, to the kinetic isotope effect associated
with COs reduction: 12CO._is converted to methane at

a faster rate than _3CO2, leaving the residual ZCO2

pool isotopically heavier.

The methane produced between 50 and 75 days

is depleted in 13C compared to the methane produced

by CO2 reduction. The methane produced after
85 days is enriched in 13C relative to the methane

derived from CO2. Although we cannot rule out the

possibility that the isotope fi'actionation factor for

COz reduction varied over the course of the experi-

ment, OtcR values substantially less than 1.05 or

greater than 1.07 are unlikely. Production of methane
with _513Cvalues well outside the range expected for

COz reduction are in all likelihood related to methane
production from acetate.

Methane from acetate fermentation. The 813c of

methane produced from acetate (8_3C-MPA) cannot

be calculated directly (using an equation analogous to

equation (10)) because the 813C of acetate in the

magnum syringe sediment is unknown. However,

813C-MPA can be estimated by an isotope mass
balance calculation:

813C_MPA = (SI3C-MP) - (I-F) 813C-MPC
F , (11)

where F denotes the fraction of methane derived

from acetate (Figure 4b). The large range in

8_3C-MPC values, due to uncertainty in the isotope
fractionation factor for CO2 reduction, limits the

accuracy of the 813C-MPA calculation. It is possible,

however, to place constraints on the isotopic compo-
sition of the methane produced by acetate fermen-

tation. In the following section, we estimate
813C-MPA for two periods during the experiment:

(1) the 51 to 58 day interval con'esponding to mini-
mum 8_3C-MP values and (2) the 86 to 93 day inter-

val corresponding to maximum 813C-MP values.

During the 51 to 58 day interval, the methane

produced by the sediment microcosm was depleted in
13C (813C-MP = -94 %o) compared to the methane

produced from CO2 (813C-MPC > -83 °/oo) (Figure

7). This implies a source of 13C-depleted methane

derived from a pathway other than CO2 reduction.
Acetate fermentation is the most likely source of this

methane; the lack of methane production in the pre-

sence of sulfate argues against significant methane

production from noncompetitive subsu'ates. Acetate

fermentation accounted for 34% of the methane pro-
duced at 58 days (Figure 4b). Isotope mass balance

(equation (11)) requires that the methane produced

by acetate fermentation during the 51 to 58 day
interval have a 8_3C value less than -115 %< This

extreme level of LaC depletion is only possible if the

methyl group of the acetate molecule is highly

depleted.

Net acetate accumulation during the 51 to 58 day

interval (Figure 2b) indicates that gross production

exceeded consumption. Since acetoclastic methan-

ogens were not substrate limited, isotopic fraction-
ation of the acetate methyl carbon was not influenced

by closed system effects. Under these conditions, the
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carbonisotopiccompositionoftheacetatemethyl
group(_13C-*CH3COOH)canbecalculatedby
rearranginganequationanalogousto(10):

_I3C-*CH3COOH=

(_I3C-MPA (Z,_d_+ ((ZAF- 1) 10 3 , (12)

where OAFis the isotope fractionation factor for

acetate dissimilation. Laboratory estimates of (XAF
range from 1.02 to 1.03 for pure cultures of the

acetate-utilizing methanogen Methanosarcina barkeri

[Risatti and Hayes, 1983; Krzycki et al., 1987].
Comparable values (1.032 t 0.014) were estimated

for methanogenic sediments from Cape Lookout

Bight [Blair and Carter, 1992]. The latter values,
inferred from measured downcore shifts in the

isotopic composition of the acetate methyl carbon,
are adopted for the following calculations. Given a
813C-MPA of-115 %o for the 51 to 58 day interval

(from equation (11)), we calculate a 813C of the

acetate methyl carbon of -74 to -99 %o (equation
(12)). The large range in the 813C-*CH3COOH

values stems from uncertainty in C_AF.

Autotrophic acetogenic bacteria provide a mecha-

nism for producing acetate with a methyl group that
is highly depleted in 13C. Gelwicks et al. [1989] have

shown that pure cultures ofAcetobacterium woodii

grown autotrophically on CO2 and H2 produce iso-

topically homogeneous acetate that is depleted in _3C

by 59 %0 relative to the ZCOz pool. If the fraction-

ation factor for Acetobacterium woodii in pure

culture is applicable to microbial populations in the

sediment microcosm, autotrophic acetogenesis

during the 51 to 58 day interval would produce
acetate with a methyl _5J3C value of-71%o.

Although this _S13C-*CH3COOH value is slightly

outside the range predicted above, it demonstrates the

plausibility of extreme 13C depletion in methane

derived from autotrophically produced acetate.

At 86 days, acetate fermentation accounted for

87% of the methane produced by the sediment
microcosm (Figure 4b). The methane produced

during the 86 to 93 day interval was enriched in 13C

(813C-MP = -42 %0) compared to the methane
derived from CO2 reduction (_13C-MPC< -62 %)

(Figure 7). Isotope mass balance constraints indicate

that methane produced by acetate fermentation during

this period had a 8_3C value of -37 to -39 %o

(equation (11)).

The acetate pool was nearly quantitatively con-
sumed during the 86 to 93 day interval (Figure 2a).

Assuming no isotopic fractionation during methyl

group oxidation [Blair and Carter, 1992], the rela-
tionship between _513C-*CH3COOH and _SI3C-MPA

is given by a closed-system Raleigh equation

[Hayes, 1983]:

_I3C-*CH3COOH =

813C_MPA_ (tXAF- 1)(l-f) [ln (l-f)] 103 , (13)
O_AF f

where f is the fraction of the acetate methyl carbon

pool converted to methane. The f value (0.80) was

calculated from the rate of methane production from

acetate at 86 days (Figure 3b) divided by the net
acetate depletion rate during the 86 to 93 day interval

(Figure 2b). From (13), we calculate 813C -

*CH3COOH values ranging from -24 to -33 %o.

Although the range of calculated values is large

(reflecting uncertainty in OtAF),they overlap with

values expected for acetate produced by fermentative

processes (-21 to -25 %0) [Blair and Carter, 1992].
The 813C of methane produced from acetate

(calculated by isotope mass balance, equation (11))

varied from less than -115 o/_ (51 to 58 day interval)

to greater than -39 %o (86 to 93 day interval). Such

large variations cannot be accounted for by changes
in the isotope fractionation factor for acetate dissim-

ilation. Rather, the variations in 813C-MPA imply

changes in the isotopic composition of the acetate

methyl carbon.

Microbial Controls on _13C-CH4

We have shown that large variations in the _513C

of methane produced by the sediment microcosm

were driven by shifts in the relative rates of CO2
reduction and acetate fermentation, as well as

changes in the isotopic composition of the CO2 pool

and the acetate methyl carbon. In this section, we

present a scenario describing the microbial processes

that may have played a role in controlling the vari-
ations in isotopic composition of methane produced

by the microcosm.

Organic matter degradation in the sediment

microcosm can be divided into three distinct periods:

(1) the sulfate reduction period, (2) the sulfate-
methane transition period, and (3) the methane

production period. During the sulfate reduction

period (0 to 42 days), high sulfate reduction rates

(Figure 3a) were supported by rapid degradation of
relatively fresh organic matter. Sulfate concentrations

(Figure 2a) throughout this period exceeded the level
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at which sulfate-reducing bacteria become sulfate-

limited (0.2 mM) [Ingvorsen et al., 1984]. In the

presence of nonlimiting sulfate concentrations,
sulfate-reducing bacteria maintain acetate and Hz
concentrations at a level too low to support growth of

methanogenic bacteria [Lovley et al., 1982; Lovley

and Klug, 1986]. The acetate and Hz produced by

organic matter degradation were essentially unavail-
able to methanogenic bacteria and total methane

production rates were negligible (Figure 4a).

During the sulfate-methane transition period

(42 to 60 days), sulfate concentrations dropped to
threshold levels for uptake by sulfate-reducing

bacteria (10 to 20 p.M) [Ingvorsen et al., 1984].

Methane began to accumulate in the magnum syringe

(Figure 2a), suggesting that methanogens had

replaced sulfate reducers as the primary acetate and

H2 consumers. Methane production was initially
dominated by CO2 reduction (Figure 3b), possibly

because methanogens growing on Hz-CO2 have

faster doubling times than acetoclastic species

[Vogels et al., 1988]. The first methane produced by
the microcosm had a 513C of -80 %0, within the

range of values expected for methane produced from

CO2 (Figure 7).

The accumulation of acetate during the sulfate-

methane transition period (Figure 2b) suggests that

the existing population of acetate-utilizing methano-

genic bacteria was unable to keep pace with acetate
production. It is not known whether the H2 reservoir

experienced a similar accumulation, but relatively
slow rates of CO2 reduction during the sulfate-

methane transition (Figure 3b) suggest that the

population of methanogenic bacteria was not fully

developed. These conditions would be favorable for

H2-consuming acetogenic bacteria that normally
cannot compete with sulfate-reducing or methano-

genic bacteria [Lovley and Klug, 1983]. Most
acetogenic bacteria capable of growing on Hz-COz
are also able to grow by fermenting sugars to acetate

[Dolfing, 1988]. Therefore acetogenic bacteria

(unlike methanogens) can exist in a commensal

relationship with sulfate-reducing bacteria, and
would be well poised to take advantage of a tem-

porary reduction in Hi demand that might follow
sulfate depletion. Acetate produced from H2-CO2 by

autotrophic acetogenic bacteria would be highly

depleted in t3C [Gelwicks et al., 1989]. Subsequent
methane production from this acetate could account

for the 13C-depleted methane (-94 %0) produced at
the end of the transition period (Figure 7).

The methane production period (60 to 114 days)

can be divided into two subperiods. During the first

subperiod (60 to 90 days), methane production was
dominated by acetate fermentation (Figure 3b). The

high methane production rates were fueled by the

large acetate pool that had begun accumulating during
the sulfate-methane transition (Figure 2b). Methane

production rates from COz reached a plateau during

this subperiod (Figure 3b), suggesting that H2-
consuming methanogens were keeping pace with Hz

production. Since acetogens cannot successfully
compete for Hz with a well-developed methanogen

population [Lovley and Klug, 1983], the acetate that
accumulated throughout most of this subperiod was

probably synthesized via the sugar fermentation path-

way. The methyl carbon in acetate produced by sugar
fermentation would be isotopically "heavy," and thus

give rise to methane enriched in 13C [Whiticar et al.,

1986]. The 13C-rich methane (-42 °/oo) produced
toward the end of the initial methane production

subperiod (Figure 7) is consistent with the predom-
inance of methane production from acetate synthe-

sized by the fermentative pathway.

The second methane production subperiod (90 to

114 days) marks the return to a stable microcosm.
Acetate concentrations were depleted to steady state

levels (Figure 2b) and total methane production rates

decreased gradually (Figure 4a) as the abundance of

labile organic matter declined. Assuming that

methanogens were the exclusive acetate and H2 sinks

during this period, the relative availability of acetate
and Hz must have been controlled by their respective

production rates. Methane production was dominated
by CO2 reduction (Figure 3b), suggesting that Hz

was produced in stoichiometric excess of acetate.

The methane produced during the final subperiod

was enriched in 13C (-46 to -60 °/oo) relative to the

methane produced during the sulfate-methane tran-
sition (-80 to -94 %). Although CO2 reduction
accounted for -70% of the methane produced during

both these periods (Figure 4b), the methane pre-
cursors were enriched in 13C during the latter period.

The ECOz pool was progressively enriched in 13C

following sulfate depletion (Figure 5a), presumably

due to preferential uptake of _Zcoz by methanogenic
and possibly autotrophic acetogenic bacteria. The _3C
enrichment in the acetate methyl group may be related

to changes in the pathway of acetate synthesis

(i.e., autotrophic acetogenesis during the sulfate-
methane transition; sugar fermentation during the

methane production period).
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Comparison of Laboratory Microcosm and Natural
Sediment

A laboratory microcosm is a highly artificial

system. Removing sediment from its natural setting

and placing it in a sealed container will inevitably
lead to perturbations. The results of the microcosm

experiment must be compared with in situ data to

evaluate whether the processes that control isotopic
variability in the sediment microcosm may also
operate in undisturbed marine sediment.

The stable carbon isotopic composition of

methane contained in gas bubbles emitted from Cape
Lookout Bight sediments (Figure 8a) varies by
-10 °/oo over the course of a year [Martens et al.,

1986; Burke et al., 1987]. Between February and
May, 513C-CH4 values remain relatively constant at

-63 to -65 °/oo. For a short period at the end of May,
_13C-CH4 values drop to -68.5 %o. The transient

decline is followed by a shift toward more positive
_5_3Cvalues that continues through the middle of

August. Between August and November, _i13C-CH4
values gradually decline from -57 to -62 %o.

Martens et al. [1986, p. 1300] hypothesize that the

"observed seasonal isotopic variations are ...

controlled by changes in pathways of methane
production and cycling of acetate and molecular
hydrogen within the sediments".

There is a dramatic increase in the acetate inven-

tory in Cape Lookout Bight sediments between May
and August (Figure 8b). The bulk of the summertime

acetate inventory is contained in a narrow subsurface

peak centered at 10 to 15 cm [Sansone and Martens,
1982]. The vertical extent of the sulfate reduction

zone in Cape Lookout Bight decreases during the

spring, as sulfate reduction rates increase in response
to higher sediment temperatures [Crill and Martens,

1987]. The appearance of the subsurface acetate peak
at the end of May con'esponds to the sulfate-

depletion depth crossing the 15 cm horizon [Sansone
and Martens, 1982].

Sediment accumulation rates for Cape Lookout
Bight (determined from 7Be inventories) indicate that

sediment residing at the 10 to 15 cm interval in May
was deposited at the sediment surface during the late

fall [Canuel et al., 1990]. As a result of relatively

cool sediment temperatures, organic matter deposited

in the fail is effectively preserved through the winter
and spring, reaching the I0 to 15 cm horizon with a

large fraction of its labile component intact. As sedi-

ments warm during the spring, this labile material is

able to support high rates of acetate production.
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Fig. 8. Seasonal changes in Cape Lookout Bight
sediment. (a) 613C of methane in gas bubbles

collected during 1983 to 1984 (open circles denote

data from Martens et al. [ 1986]; closed circles denote

data from Burke et al. [1987]); (b) acetate inventory

calculated by integrating acetate concentration-depth
distributions (0 to 36 cm) determined on sediment

cores collected in 1990. The error bars in Figure 8a
denote the standard deviation based on two to four

replicate samples.

The processes that lead to rapid acetate accu-

mulation in the sediment column (Figure 8b) and the

sediment microcosm (Figure 2b) are presumably
similar: high rates of acetate production accompanied
by a sudden reduction in the rate of acetate con-

sumption. In the case of the sediment microcosm, the

decline in acetate consumption appears to be caused
by the cessation of sulfate reduction (due to sulfate-

limitation) and a lag in acetate consumption by
methanogenic bacteria (due the slow growth rate of
acetoclastic methanogens).

There is a striking similarity in the relationship
between _i13C-CH4 and acetate concentration (or
inventory) for both the microcosm and the undis-
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turbedsediment(cf.Figures2b,7,and8).Forboth
systems,methaneproduced(oremitted)atthe
beginningoftheacetateaccumulationperiodisrela-
tivelydepletedin13C.Likewise,methaneproduced
(oremitted)duringtheperiodofrapidacetate
depletionisrelativelyenrichedinL3C.Seasonal
variationsingI3C-CH4(-10°/oo)aremuchsmaller
thanvariationsinthemicrocosm(-50%0),pre-
sumablyduetoinertiaimposedbythesediment
columnmethaneinventory.

Thesimilaritiesbetweenlaboratoryandfielddata
suggestthatsimilarprocessescontroltheisotopic
compositionofmethaneproducedbythelaboratory
microcosmandnaturalsediment.Theshoalingofthe
sulfate-depletiondepthtothesedimenthorizoncon-
taininglabileorganicmaterialmayinitiateascenario
similartothatdescribedforthesedimentmicrocosm.
First,sulfatedepletionmayleadtoatemporary
reductionincompetitionforacetateandH2,resulting
inacetatepoolingandpossibly,productionof _3C-
depletedacetatebyautotrophicacetogenicbacteria.
The13C-depletedmethaneemittedattheendofMay
isconsistentwithapredominanceoftheCO2-
reductionpathway(duetotheslowgrowthrateof
acetoclasticmethanogens)andpossibly,methane
productionfrom_3C-depletedacetate.Second,
acetatefermentationmaybecomethedominant
methaneproductionpathwayastheacetoclastic
methanogensrespondtotheelevatedacetateconcen-
trations.SinceacetogenscannotcompeteforHzwith
anactivemethanogenpopulation,autotrophicaceto-
genesisisunlikely.The13C-rich methane emitted
from June thru August is consistent with acetate
dissimilation being the dominant methane production

pathway. Third, the methane production pathway
may shift in favor of CO2 reduction after the acetate
inventory is fully depleted. The shift toward t3c-

depleted methane from September thru November is
consistent with increased importance of CO2

reduction after depletion of the acetate reservoir.

CONCLUSIONS

The laboratory microcosm experiment demon-

strates that a single sample of anoxic marine sediment

incubated at constant temperature can produce
methane with g_3C values that vary from -94 to

-42 °/oo. The variations in _i_3C-CH4 were caused by

changes in the relative importance of acetate fer-
mentation and COz reduction, as well as changes in

the isotopic composition of the methane precursors

(acetate and CO?). Concurrent methane oxidation and

production were observed, but oxidation was a small
fraction (2.4%) of the gross production. It is unlikely

that methane oxidation was an important factor in

controlling the isotopic composition of methane.
Variations in the relative importance of CO2 re-

duction and acetate fermentation can be understood in

terms of changes in microbial processes that occurred

as sediment bacteria responded to sulfate depletion.

The initial predominance of the COz reduction path-

way is consistent with the relatively slow growth rate
of acetate-utilizing methanogens. The subsequent

shift in pathway to acetate fermentation appears to be

a response to the elevated acetate concentrations that
had accumulated following sulfate depletion. The

return to CO2 reduction as the dominant pathway
toward the end of the microcosm experiment corre-

sponds with the rapid and nearly quantitative deple-

tion of the acetate pool.
The apparent changes in the isotopic composition

of the acetate methyl carbon may be related to

changes in the pathway of acetate synthesis, which in

turn, were controlled by competition for H2.

Changes in isotopic composition of the ZCOz pool

during the microcosm experiment are presumably
due to isotopic fractionation associated with COa

reduction by methanogenic and possibly autotrophic

acetogenic bacteria.
A comparison of microcosm and field data

reveals a striking similarity in the relationship
between _3C-CH4 and acetate concentration or

inventory. This suggests that the processes that
control in situ seasonal variations in the isotopic

composition of methane emitted from Cape Lookout

Bight sediments may be similar to those that con-
trolled variations in the isotopic composition of

methane produced by the sediment microcosm. This

experiment demonstrates that laboratory-based

process studies coupled with field measurements
provide a powerful tool for interpreting and
understanding stable isotope signatures in nature.
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